Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bejnordi, Babak Ehteshami [VerfasserIn]   i
 Balkenhol, Maschenka [VerfasserIn]   i
 Litjens, Geert [VerfasserIn]   i
 Holland, Roland [VerfasserIn]   i
 Bult, Peter [VerfasserIn]   i
 Karssemeijer, Nicolaas [VerfasserIn]   i
 Laak, Jeroen van der [VerfasserIn]   i
Titel:Automated detection of DCIS in whole-slide H E stained breast histopathology images
Verf.angabe:Babak Ehteshami Bejnordi, Maschenka Balkenhol, Geert Litjens, Roland Holland, Peter Bult, Nico Karssemeijer, Jeroen A. W. M. van der Laak
E-Jahr:2016
Jahr:05 April 2016
Umfang:10 S.
Fussnoten:Gesehen am 05.05.2020
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2016
Band/Heft Quelle:35(2016), 9, Seite 2141-2150
ISSN Quelle:1558-254X
Abstract:This paper presents and evaluates a fully automatic method for detection of ductal carcinoma in situ (DCIS) in digitized hematoxylin and eosin (H&E) stained histopathological slides of breast tissue. The proposed method applies multi-scale superpixel classification to detect epithelial regions in whole-slide images (WSIs). Subsequently, spatial clustering is utilized to delineate regions representing meaningful structures within the tissue such as ducts and lobules. A region-based classifier employing a large set of features including statistical and structural texture features and architectural features is then trained to discriminate between DCIS and benign/normal structures. The system is evaluated on two datasets containing a total of 205 WSIs of breast tissue. Evaluation was conducted both on the slide and the lesion level using FROC analysis. The results show that to detect at least one true positive in every DCIS containing slide, the system finds 2.6 false positives per WSI. The results of the per-lesion evaluation show that it is possible to detect 80% and 83% of the DCIS lesions in an abnormal slide, at an average of 2.0 and 3.0 false positives per WSI, respectively. Collectively, the result of the experiments demonstrate the efficacy and accuracy of the proposed method as well as its potential for application in routine pathological diagnostics. To the best of our knowledge, this is the first DCIS detection algorithm working fully automatically on WSIs.
DOI:doi:10.1109/TMI.2016.2550620
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TMI.2016.2550620
 DOI: https://doi.org/10.1109/TMI.2016.2550620
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Algorithms
 architectural features
 benign structures
 biomedical optical imaging
 Breast
 Breast Neoplasms
 breast tissue
 Breast tissue
 cancer
 Cancer
 Carcinoma, Ductal, Breast
 Carcinoma, Intraductal, Noninfiltrating
 Clustering algorithms
 Computer-aided diagnosis
 DCIS Detection
 DCIS detection algorithm
 DCIS lesion
 Design automation
 digitized hematoxylin and eosin stained histopathological slides
 ductal carcinoma in situ detection
 ducts
 epithelial region
 Feature extraction
 FROC analysis
 fully automatic method
 H&E staining
 Humans
 image classification
 image texture
 lesion level
 Lesions
 lobules
 meaningful structures
 medical image processing
 multiscale superpixel classification
 normal structures
 Pathology
 region-based classifier
 routine pathological diagnostics
 spatial clustering
 statistical texture features
 structural texture features
 tumours
 whole-slide H&E stained breast histopathology images
 whole-slide imaging
 WSI
K10plus-PPN:1697206034
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68573271   QR-Code
zum Seitenanfang