Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Vollmuth, Philipp [VerfasserIn]   i
 Götz, Michael [VerfasserIn]   i
 Muschelli, John [VerfasserIn]   i
 Wick, Antje [VerfasserIn]   i
 Neuberger, Ulf [VerfasserIn]   i
 Shinohara, Russell T. [VerfasserIn]   i
 Sill, Martin [VerfasserIn]   i
 Nowosielski, Martha [VerfasserIn]   i
 Schlemmer, Heinz-Peter [VerfasserIn]   i
 Radbruch, Alexander [VerfasserIn]   i
 Wick, Wolfgang [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
 Bonekamp, David [VerfasserIn]   i
Titel:Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response
Verf.angabe:Philipp Kickingereder, Michael Götz, John Muschelli, Antje Wick, Ulf Neuberger, Russell T. Shinohara, Martin Sill, Martha Nowosielski, Heinz-Peter Schlemmer, Alexander Radbruch, Wolfgang Wick, Martin Bendszus, Klaus H. Maier-Hein, and David Bonekamp
E-Jahr:2016
Jahr:[2016]
Umfang:7 S.
Illustrationen:Illustrationen
Fussnoten:Published online first October 10, 2016 ; Gesehen am 11.05.2020
Titel Quelle:Enthalten in: Clinical cancer research
Ort Quelle:Philadelphia, Pa. [u.a.] : AACR, 1995
Jahr Quelle:2016
Band/Heft Quelle:22(2016), 23, Seite 5765-5771
ISSN Quelle:1557-3265
Abstract:Purpose: Antiangiogenic treatment with bevacizumab, a mAb to the VEGF, is the single most widely used therapeutic agent for patients with recurrent glioblastoma. A major challenge is that there are currently no validated biomarkers that can predict treatment outcome. Here we analyze the potential of radiomics, an emerging field of research that aims to utilize the full potential of medical imaging. - Experimental Design: A total of 4,842 quantitative MRI features were automatically extracted and analyzed from the multiparametric tumor of 172 patients (allocated to a discovery and validation set with a 2:1 ratio) with recurrent glioblastoma prior to bevacizumab treatment. Leveraging a high-throughput approach, radiomic features of patients in the discovery set were subjected to a supervised principal component (superpc) analysis to generate a prediction model for stratifying treatment outcome to antiangiogenic therapy by means of both progression-free and overall survival (PFS and OS). - Results: The superpc predictor stratified patients in the discovery set into a low or high risk group for PFS (HR = 1.60; P = 0.017) and OS (HR = 2.14; P < 0.001) and was successfully validated for patients in the validation set (HR = 1.85, P = 0.030 for PFS; HR = 2.60, P = 0.001 for OS). - Conclusions: Our radiomic-based superpc signature emerges as a putative imaging biomarker for the identification of patients who may derive the most benefit from antiangiogenic therapy, advances the knowledge in the noninvasive characterization of brain tumors, and stresses the role of radiomics as a novel tool for improving decision support in cancer treatment at low cost. Clin Cancer Res; 22(23); 5765-71. ©2016 AACR.
DOI:doi:10.1158/1078-0432.CCR-16-0702
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1158/1078-0432.CCR-16-0702
 Volltext: https://clincancerres.aacrjournals.org/content/22/23/5765
 DOI: https://doi.org/10.1158/1078-0432.CCR-16-0702
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1697856527
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68575414   QR-Code
zum Seitenanfang