Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Keppler, Frank [VerfasserIn]   i
 Röhling, Amelie Ninja [VerfasserIn]   i
 Jäger, Nicole [VerfasserIn]   i
 Schroll, Moritz [VerfasserIn]   i
 Hartmann, Simon Christoph [VerfasserIn]   i
 Greule, Markus [VerfasserIn]   i
Titel:Sources and sinks of chloromethane in a salt marsh ecosystem
Titelzusatz:constraints from concentration and stable isotope measurements of laboratory incubation experiments
Verf.angabe:Frank Keppler, Amelie Ninja Röhling, Nicole Jaeger, Moritz Schroll, Simon Christoph Hartmann and Markus Greule
E-Jahr:2020
Jahr:12 February 2020
Umfang:15 S.
Fussnoten:Gesehen am 12.05.2020
Titel Quelle:Enthalten in: Environmental science
Ort Quelle:Cambridge : RSC Publ., 2013
Jahr Quelle:2020
Band/Heft Quelle:22(2020), 3, Seite 627-641
ISSN Quelle:2050-7895
Abstract:Chloromethane (CH3Cl) is the most abundant long-lived chlorinated organic compound in the atmosphere and contributes significantly to natural stratospheric ozone depletion. Salt marsh ecosystems including halophyte plants are a known source of atmospheric CH3Cl but estimates of their total global source strength are highly uncertain and knowledge of the major production and consumption processes in the atmosphere-halophyte-soil system is yet incomplete. In this study we investigated the halophyte plant, Salicornia europaea, and soil samples from a coastal salt marsh site in Sardinia/Italy for their potential to emit and consume CH3Cl and using flux measurements, stable isotope techniques and Arrhenius plots differentiated between biotic and abiotic processes. Our laboratory approach clearly shows that at least 6 different production and consumption processes are active in controlling atmospheric CH3Cl fluxes of a salt marsh ecosystem. CH3Cl release by dried plant and soil material was substantially higher than that from the fresh material at temperatures ranging from 20 to 70 °C. Results of Arrhenius plots helped to distinguish between biotic and abiotic formation processes in plants and soils. Biotic CH3Cl consumption rates were highest at 30 °C for plants and 50 °C for soils, and microbial uptake was higher in soils with higher organic matter content. Stable isotope techniques helped to distinguish between formation and degradation processes and also provided a deeper insight into potential methyl moiety donor compounds, such as S-adenosyl-L-methionine, S-methylmethionine and pectin, that might be involved in the abiotic and biotic CH3Cl production processes. Our results clearly indicate that cycling of CH3Cl in salt marsh ecosystems is a result of several biotic and abiotic processes occurring simultaneously in the atmosphere-plant-soil system. Important precursor compounds for biotic and abiotic CH3Cl formation might be methionine derivatives and pectin. All formation and degradation processes are temperature dependent and thus environmental changes might affect the strength of each source and sink within salt marsh ecosystems and thus considerably alter total fluxes of CH3Cl from salt marsh ecosystems to the atmosphere.
DOI:doi:10.1039/C9EM00540D
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1039/C9EM00540D
 Volltext: https://pubs.rsc.org/en/content/articlelanding/2020/em/c9em00540d
 DOI: https://doi.org/10.1039/C9EM00540D
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1698018967
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68575805   QR-Code
zum Seitenanfang