Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kittas, Aristotelis [VerfasserIn]   i
 Delobelle, Aurélien [VerfasserIn]   i
 Schmitt, Sabrina [VerfasserIn]   i
 Breuhahn, Kai [VerfasserIn]   i
 Guziolowski, Carito [VerfasserIn]   i
 Grabe, Niels [VerfasserIn]   i
Titel:Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling
Verf.angabe:Aristotelis Kittas, Aurélien Delobelle, Sabrina Schmitt, Kai Breuhahn, Carito Guziolowski and Niels Grabe
E-Jahr:2016
Jahr:[2016]
Umfang:11 S.
Fussnoten:Gesehen am 13.05.2020
Titel Quelle:Enthalten in: Vereinigung der Europäischen Biochemischen GesellschaftenThe FEBS journal
Ort Quelle:Oxford [u.a.] : Wiley-Blackwell, 2005
Jahr Quelle:2016
Band/Heft Quelle:283(2016), 2, Seite 350-360
ISSN Quelle:1742-4658
Abstract:An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg.
DOI:doi:10.1111/febs.13580
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1111/febs.13580
 Volltext: https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/febs.13580
 DOI: https://doi.org/10.1111/febs.13580
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:answer set programming
 biological networks
 HGF signaling
 logic programming
 logical modelling
 random walks
 subgraph extraction
K10plus-PPN:1698107986
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68576248   QR-Code
zum Seitenanfang