| Online-Ressource |
Verfasst von: | Wolde, Pieter Rein ten [VerfasserIn]  |
| Becker, Nils B. [VerfasserIn]  |
| Ouldridge, Thomas E. [VerfasserIn]  |
| Mugler, Andrew [VerfasserIn]  |
Titel: | Fundamental limits to cellular sensing |
Verf.angabe: | Pieter Rein ten Wolde, Nils B. Becker, Thomas E. Ouldridge, Andrew Mugler |
E-Jahr: | 2016 |
Jahr: | 18 January 2016 |
Umfang: | 10 S. |
Illustrationen: | Diagramme |
Fussnoten: | Gesehen am 20.05.2020 |
Titel Quelle: | Enthalten in: Journal of statistical physics |
Ort Quelle: | New York, NY [u.a.] : Springer Science + Business Media B.V., 1969 |
Jahr Quelle: | 2016 |
Band/Heft Quelle: | 162(2016), 5, Seite 1395-1424 |
ISSN Quelle: | 1572-9613 |
Abstract: | In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade-off between accuracy and energetic cost. |
DOI: | doi:10.1007/s10955-015-1440-5 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1007/s10955-015-1440-5 |
| DOI: https://doi.org/10.1007/s10955-015-1440-5 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1698659482 |
Verknüpfungen: | → Zeitschrift |
Fundamental limits to cellular sensing / Wolde, Pieter Rein ten [VerfasserIn]; 18 January 2016 (Online-Ressource)