Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Liu, Ding [VerfasserIn]  |
| Jiang, Minghu [VerfasserIn]  |
| Yang, Xiaofang [VerfasserIn]  |
| Li, Hui [VerfasserIn]  |
Titel: | Analyzing documents with quantum clustering |
Titelzusatz: | a novel pattern recognition algorithm based on quantum mechanics |
Verf.angabe: | Ding Liu, Minghu Jiang, Xiaofang Yang, Hui Li |
E-Jahr: | 2016 |
Jahr: | 24 March 2016 |
Umfang: | 6 S. |
Fussnoten: | Gesehen am 27.05.2020 |
Titel Quelle: | Enthalten in: Molecular and biochemical parasitology |
Ort Quelle: | Amsterdam : Elsevier, 1980 |
Jahr Quelle: | 2016 |
Band/Heft Quelle: | 77(2016), Seite 8-13 |
ISSN Quelle: | 1872-9428 |
Abstract: | The article introduces Quantum Clustering, a novel pattern recognition algorithm inspired by quantum mechanics and extend it to text analysis. This novel method improves upon nonparametric density estimation (i.e. Parzen-window), and differentiates itself from it in a significant way, Quantum Clustering constructs the potential function to determine the cluster center instead of the Gaussian kernel function. Specifically, detailed comparative analysis shows that the potential function could clearly reveal the underlying structure of the data that the Gaussian kernel could not handle. Moreover, the problem of parameter estimation is solved successfully by the numerical optimization approach (i.e. Pattern Search). Afterwards, the results of detailed comparative experiments on three benchmark datasets confirms the advantage of Quantum Clustering over the Parzen-window, and the additional trial on authorship identification illustrates the wide application scope of this novel method. |
DOI: | doi:10.1016/j.patrec.2016.03.008 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1016/j.patrec.2016.03.008 |
| Volltext: http://www.sciencedirect.com/science/article/pii/S0167865516000775 |
| DOI: https://doi.org/10.1016/j.patrec.2016.03.008 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Quantum clustering |
| Text analysis |
| Text clustering |
K10plus-PPN: | 1698891156 |
Verknüpfungen: | → Zeitschrift |
Analyzing documents with quantum clustering / Liu, Ding [VerfasserIn]; 24 March 2016 (Online-Ressource)
68581260