Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Li, Ming [VerfasserIn]   i
 Sagl, Günther [VerfasserIn]   i
 Mburu, Lucy [VerfasserIn]   i
 Fan, Hongchao [VerfasserIn]   i
Titel:A contextualized and personalized model to predict user interest using location-based social networks
Verf.angabe:Ming Li, Günther Sagl, Lucy Mburu, Hongchao Fan
E-Jahr:2016
Jahr:23 April 2016
Umfang:10 S.
Fussnoten:Gesehen am 08.06.2020
Titel Quelle:Enthalten in: Computers, environment and urban systems
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1980
Jahr Quelle:2016
Band/Heft Quelle:58(2016), Seite 97-106
Abstract:The accurate determination of user interest in terms of geographic information is essential to numerous mobile applications, such as recommender systems and mobile advertising. User interest is greatly influenced by the usage context and varies across individuals; therefore, a user interest model should incorporate these individual needs and propensities. In this paper, we present an approach to model user interest in a contextualized and personalized manner based on location-based social networks. Multinomial logistic regression is employed to quantify the relationship between user interest and usage context at both the aggregate and individual levels. The proposed approach is tested in a real-world application using Foursquare check-ins issued between February and June 2014 in the three major cities of Chicago, Los Angeles and New York. Results demonstrate the capability of the contextualization process for capturing contextual influences on user interest, and that such influences can be observed at a fine-grained scale at the individual level through the personalization process. The proposed approach therefore enables contextualized and personalized estimation of user interest, thereby contributing useful information to follow-up mobile applications.
DOI:doi:10.1016/j.compenvurbsys.2016.03.006
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.compenvurbsys.2016.03.006
 Volltext: http://www.sciencedirect.com/science/article/pii/S0198971516300357
 DOI: https://doi.org/10.1016/j.compenvurbsys.2016.03.006
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Context-awareness
 Location-based social networks
 Personalization
 Prediction
 User interest
K10plus-PPN:1700121367
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68585101   QR-Code
zum Seitenanfang