Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gjorgjieva, Julijana [VerfasserIn]   i
 Evers, Jan-Felix [VerfasserIn]   i
 Eglen, Stephen J. [VerfasserIn]   i
Titel:Homeostatic activity-dependent tuning of recurrent networks for robust propagation of activity
Verf.angabe:Julijana Gjorgjieva, Jan Felix Evers, and Stephen J. Eglen
E-Jahr:2016
Jahr:Feb. 9, 2016
Umfang:13 S.
Fussnoten:Gesehen am 16.06.2020
Titel Quelle:Enthalten in: The journal of neuroscience
Ort Quelle:Washington, DC : Soc., 1981
Jahr Quelle:2016
Band/Heft Quelle:36(2016), 13, Seite 3722-3734
ISSN Quelle:1529-2401
Abstract:Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network inDrosophilalarvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. - SIGNIFICANCE STATEMENT: How are neural circuits organized and tuned to maintain stable function and produce robust output? This task is especially difficult during development, when circuit properties change in response to variable environments and internal states. Many developing circuits exhibit spontaneous activity, but its role in the synaptic organization of motor networks that produce rhythmic output is unknown. We studied a model motor network, that when appropriately tuned, generates propagating activity as during crawling inDrosophilalarvae. Based on experimental evidence of activity-dependent tuning of connectivity, we examined plausible mechanisms by which appropriate connectivity emerges. Our results suggest that activity-dependent homeostatic mechanisms are better suited than Hebbian mechanisms for organizing motor network connectivity, and highlight an important difference from sensory areas.
DOI:doi:10.1523/JNEUROSCI.2511-15.2016
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

DOI: https://doi.org/10.1523/JNEUROSCI.2511-15.2016
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Action Potentials
 activity-dependent
 Animals
 Computer Simulation
 development
 Drosophila
 homeostasis
 Homeostasis
 Humans
 Locomotion
 Models, Neurological
 Nerve Net
 Neural Networks, Computer
 Neuronal Plasticity
 Neurons
 Periodicity
 recurrent network
 tuning
K10plus-PPN:1700683292
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68587352   QR-Code
zum Seitenanfang