Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Sun, Yeran [VerfasserIn]   i
 Fan, Hongchao [VerfasserIn]   i
 Bakillah, Mohamed [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:Road-based travel recommendation using geo-tagged images
Verf.angabe:Yeran Sun, Hongchao Fan, Mohamed Bakillah, Alexander Zipf
Jahr:2015
Jahr des Originals:2013
Umfang:$t13 S.
Fussnoten:Online 13 September 2013 ; Gesehen am 23.06.2020
Titel Quelle:Enthalten in: Computers, environment and urban systems
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1980
Jahr Quelle:2015
Band/Heft Quelle:53(2015), Seite 110-122
Abstract:Geotagged photos on social media like Flickr explicitly indicate the trajectories of tourists. They can be employed to reveal the tourists’ preference on landmarks and routings of tourism. Most of existing works on routing searches are based on the trajectories of GPS-enabled devices’ users. From a distinct point of view, we attempt to propose a novel approach in which the basic unit of routing is separate road segment instead of GPS trajectory segment. In this paper, we build a recommendation system that provides users with the most popular landmarks as well as the best travel routings between the landmarks. By using Flickr geotaggged photos, the top ranking travel destinations in a city can be identified and then the best travel routes between the popular travel destinations are recommended. We apply a spatial clustering method to identify the main travel landmarks and subsequently rank these landmarks. Using machine learning method, we calculate the tourism popularity of the road in terms of relevant parameters, e.g., the number of users and the number of Point-of-Interests. These popularity assessments are integrated into the routing recommendation system. The routing recommendation system takes into consideration both the popularity assessment and the length of the road. The best route recommended to the user minimizes the distance while including maximal tourism popularity. Experiments were conducted in two different scenarios. The empirical results show that the recommendation system is able to provide the user good travel planning including both top ranking landmarks and suitable routings in a city. Besides, the system offers user-generated semantic information for the recommended routes.
DOI:doi:10.1016/j.compenvurbsys.2013.07.006
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.compenvurbsys.2013.07.006
 Volltext: http://www.sciencedirect.com/science/article/pii/S0198971513000677
 DOI: https://doi.org/10.1016/j.compenvurbsys.2013.07.006
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Routing planning
 Semantic routing
 Spatial data mining
 Travel recommendation
 Volunteered geographic information
K10plus-PPN:1701943557
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68590024   QR-Code
zum Seitenanfang