Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Götz, Michael [VerfasserIn]   i
 Weber, Christian [VerfasserIn]   i
 Binczyk, Franciszek [VerfasserIn]   i
 Polanska, Joanna [VerfasserIn]   i
 Tarnawski, Rafal [VerfasserIn]   i
 Bobek-Billewicz, Barbara [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
 Kleesiek, Jens Philipp [VerfasserIn]   i
 Stieltjes, Bram [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
Titel:DALSA
Titelzusatz:domain adaptation for supervised learning from sparsely annotated MR images
Verf.angabe:Michael Goetz, Christian Weber, Franciszek Binczyk, Joanna Polanska, Rafal Tarnawski, Barbara Bobek-Billewicz, Ullrich Koethe, Jens Kleesiek, Bram Stieltjes, and Klaus H. Maier-Hein
E-Jahr:2016
Jahr:Jan. 2016
Umfang:13 S.
Fussnoten:Gesehen am 25.06.2020
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging
Ort Quelle:New York, NY : Institute of Electrical and Electronics Engineers, 1982
Jahr Quelle:2016
Band/Heft Quelle:35(2016), 1, Seite 184-196
ISSN Quelle:1558-254X
Abstract:We propose a new method that employs transfer learning techniques to effectively correct sampling selection errors introduced by sparse annotations during supervised learning for automated tumor segmentation. The practicality of current learning-based automated tissue classification approaches is severely impeded by their dependency on manually segmented training databases that need to be recreated for each scenario of application, site, or acquisition setup. The comprehensive annotation of reference datasets can be highly labor-intensive, complex, and error-prone. The proposed method derives high-quality classifiers for the different tissue classes from sparse and unambiguous annotations and employs domain adaptation techniques for effectively correcting sampling selection errors introduced by the sparse sampling. The new approach is validated on labeled, multi-modal MR images of 19 patients with malignant gliomas and by comparative analysis on the BraTS 2013 challenge data sets. Compared to training on fully labeled data, we reduced the time for labeling and training by a factor greater than 70 and 180 respectively without sacrificing accuracy. This dramatically eases the establishment and constant extension of large annotated databases in various scenarios and imaging setups and thus represents an important step towards practical applicability of learning-based approaches in tissue classification.
DOI:doi:10.1109/TMI.2015.2463078
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TMI.2015.2463078
 DOI: https://doi.org/10.1109/TMI.2015.2463078
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Algorithms
 automated tissue classification
 automated tumor segmentation
 Automatic multi-modal segmentation
 biomedical MRI
 Brain Neoplasms
 brain tumor segmentation
 compressed sensing
 DALSA
 Decision Trees
 domain adaptation
 domain adaptation techniques
 domain-adaptation-for-supervised-learning-from-sparsely-annotation
 glioma
 Glioma
 Humans
 image classification
 Image Processing, Computer-Assisted
 image segmentation
 Image segmentation
 Labeling
 learning-based approach
 Machine Learning
 Magnetic Resonance Imaging
 malignant gliomas
 medical image processing
 MR Images
 Noise
 random forest
 sampling selection errors
 sparse annotations
 sparse sampling
 tissue classes
 Training
 Training data
 transfer learning
 transfer learning techniques
 Tumors
 tumours
 Vegetation
K10plus-PPN:1702179869
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68591379   QR-Code
zum Seitenanfang