Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wirbka, Lucas [VerfasserIn]   i
 Haefeli, Walter E. [VerfasserIn]   i
 Meid, Andreas [VerfasserIn]   i
Titel:A framework to build similarity-based cohorts for personalized treatment advice
Titelzusatz:a standardized, but flexible workflow with the R package SimBaCo
Verf.angabe:Lucas Wirbka, Walter E. Haefeli, Andreas D. Meid
E-Jahr:2020
Jahr:May 29, 2020
Umfang:12 S.
Fussnoten:Gesehen am 06.07.2020
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2020
Band/Heft Quelle:15(2020,5) Artikel-Nummer e0233686, 12 Seite
ISSN Quelle:1932-6203
Abstract:Along with increasing amounts of big data sources and increasing computer performance, real-world evidence from such sources likewise gains in importance. While this mostly applies to population averaged results from analyses based on the all available data, it is also possible to conduct so-called personalized analyses based on a data subset whose observations resemble a particular patient for whom a decision is to be made. Claims data from statutory health insurance companies could provide necessary information for such personalized analyses. To derive treatment recommendations from them for a particular patient in everyday care, an automated, reproducible and efficiently programmed workflow would be required. We introduce the R-package SimBaCo (Similarity-Based Cohort generation) offering a simple, but modular, and intuitive framework for this task. With the six built-in R-functions, this framework allows the user to create similarity cohorts tailored to the characteristics of particular patients. An exemplary workflow illustrates the distinct steps beginning with an initial cohort selection according to inclusion and exclusion criteria. A plotting function facilitates investigating a particular patient’s characteristics relative to their distribution in a reference cohort, for example the initial cohort or the precision cohort after the data has been trimmed in accordance with chosen variables for similarity finding. Such precision cohorts allow any form of personalized analysis, for example personalized analyses of comparative effectiveness or customized prediction models developed from precision cohorts. In our exemplary workflow, we provide such a treatment comparison whereupon a treatment decision for a particular patient could be made. This is only one field of application where personalized results can directly support the process of clinical reasoning by leveraging information from individual patient data. With this modular package at hand, personalized studies can efficiently weight benefits and risks of treatment options of particular patients.
DOI:doi:10.1371/journal.pone.0233686
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0233686
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233686
 DOI: https://doi.org/10.1371/journal.pone.0233686
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Atrial fibrillation
 Charts
 Comparative effectiveness research
 Data processing
 Decision making
 Distance measurement
 Forecasting
 Reasoning
K10plus-PPN:1703853296
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68614265   QR-Code
zum Seitenanfang