Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rubio, Jose C. [VerfasserIn]   i
 Eigenstetter, Angela [VerfasserIn]   i
 Ommer, Björn [VerfasserIn]   i
Titel:Generative regularization with latent topics for discriminative object recognition
Verf.angabe:Jose C. Rubio, Angela Eigenstetter, Björn Ommer
E-Jahr:2015
Jahr:[2015]
Umfang:10 S.
Illustrationen:Illustrationen
Fussnoten:Available online 2 July 2015 ; Gesehen am 08.07.2020
Titel Quelle:Enthalten in: Pattern recognition
Ort Quelle:Amsterdam : Elsevier, 1968
Jahr Quelle:2015
Band/Heft Quelle:48(2015), 12, Seite 3871-3880
Abstract:Popular part-based approaches to recognition are currently limited to few localized parts, which only poorly represent the fine-scale details and large variability of object categories. Extending to hundreds of specific part detectors helps to capture peculiar characteristics but due to their specificity, for each object instance different parts will be helpful and others will yield noisy responses that actually impair classification. While training the part-based model, we thus need to learn which parts are relevant for which training instances. To automatically discover these latent topics of parts and instances we employ generative non-negative matrix factorization and seek topics with low reconstruction error. To assure recognition performance this generative approach is embedded within a discriminative latent max-margin procedure that separates classes while optimizing the latent topics. Consequently, generative reconstruction is regularizing discriminative classification, while the latter ensures that topics actually help in recognition. Experiments on PASCAL VOC demonstrate the recognition performance of our model as well as the construction of meaningful topics.
DOI:doi:10.1016/j.patcog.2015.06.013
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.patcog.2015.06.013
 Volltext: http://www.sciencedirect.com/science/article/pii/S0031320315002356
 DOI: https://doi.org/10.1016/j.patcog.2015.06.013
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Latent SVM
 Mixture models
 Non-Negative Matrix Factorization
 Part-based models
 Visual object recognition
K10plus-PPN:1713927713
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68614723   QR-Code
zum Seitenanfang