Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Yarlagadda, Pradeep Krishna [VerfasserIn]   i
 Ommer, Björn [VerfasserIn]   i
Titel:Beyond the sum of parts
Titelzusatz:voting with groups of dependent entities
Verf.angabe:Pradeep Yarlagadda, Björn Ommer
Jahr:2015
Jahr des Originals:2014
Umfang:14 S.
Fussnoten:Gesehen am 10.07.2020 ; Date of Publication: 16 October 2014
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence
Ort Quelle:New York, NY : IEEE, 1979
Jahr Quelle:2015
Band/Heft Quelle:37(2015), 6, Seite 1134-1147
ISSN Quelle:1939-3539
Abstract:The high complexity of multi-scale, category-level object detection in cluttered scenes is efficiently handled by Hough voting methods. However, the main shortcoming of the approach is that mutually dependent local observations are independently casting their votes for intrinsically global object properties such as object scale. Object hypotheses are then assumed to be a mere sum of their part votes. Popular representation schemes are, however, based on a dense sampling of semi-local image features, which are consequently mutually dependent. We take advantage of part dependencies and incorporate them into probabilistic Hough voting by deriving an objective function that connects three intimately related problems: i) grouping mutually dependent parts, ii) solving the correspondence problem conjointly for dependent parts, and iii) finding concerted object hypotheses using extended groups rather than based on local observations alone. Early commitments are avoided by not restricting parts to only a single vote for a locally best correspondence and we learn a weighting of parts during training to reflect their differing relevance for an object. Experiments successfully demonstrate the benefit of incorporating part dependencies through grouping into Hough voting. The joint optimization of groupings, correspondences, and votes not only improves the detection accuracy over standard Hough voting and a sliding window baseline, but it also reduces the computational complexity by significantly decreasing the number of candidate hypotheses.
DOI:doi:10.1109/TPAMI.2014.2363456
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag ; Resolving-System: http://dx.doi.org/10.1109/TPAMI.2014.2363456
 DOI: https://doi.org/10.1109/TPAMI.2014.2363456
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:category theory
 category-level object detection
 cluttered scene
 computational complexity
 Computational modeling
 dense sampling
 dependent entity
 detection accuracy
 Feature extraction
 grouping
 Grouping
 Hough transforms
 hough voting
 Hough Voting
 Hough voting method
 image representation
 image sampling
 joint optimization
 Joints
 object detection
 Object detection
 object hypotheses
 object property
 optimisation
 popular representation scheme
 probabilistic Hough voting
 probability
 recognition
 Recognition
 semi-local image feature
 sliding window baseline
 Training
 Transforms
 Vectors
 visual learning
 Visual learning
K10plus-PPN:1724376497
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68615985   QR-Code
zum Seitenanfang