Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Petrovici, Mihai A. [VerfasserIn]   i
 Vogginger, Bernhard [VerfasserIn]   i
 Müller, Paul [VerfasserIn]   i
 Breitwieser, Oliver [VerfasserIn]   i
 Lundqvist, Mikael [VerfasserIn]   i
 Muller, Lyle [VerfasserIn]   i
 Ehrlich, Matthias [VerfasserIn]   i
 Destexhe, Alain [VerfasserIn]   i
 Lansner, Anders [VerfasserIn]   i
 Schüffny, René [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
 Meier, Karlheinz [VerfasserIn]   i
Titel:Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms
Verf.angabe:Mihai A. Petrovici, Bernhard Vogginger, Paul Müller, Oliver Breitwieser, Mikael Lundqvist, Lyle Muller, Matthias Ehrlich, Alain Destexhe, Anders Lansner, René Schüffny, Johannes Schemmel, Karlheinz Meier
E-Jahr:2014
Jahr:October 10, 2014
Fussnoten:Gesehen am 13.07.2020
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2014
Band/Heft Quelle:9(2014,10) Artikel-Nummer e108590, 30 Seiten
ISSN Quelle:1932-6203
Abstract:Advancing the size and complexity of neural network models leads to an ever increasing demand for computational resources for their simulation. Neuromorphic devices offer a number of advantages over conventional computing architectures, such as high emulation speed or low power consumption, but this usually comes at the price of reduced configurability and precision. In this article, we investigate the consequences of several such factors that are common to neuromorphic devices, more specifically limited hardware resources, limited parameter configurability and parameter variations due to fixed-pattern noise and trial-to-trial variability. Our final aim is to provide an array of methods for coping with such inevitable distortion mechanisms. As a platform for testing our proposed strategies, we use an executable system specification (ESS) of the BrainScaleS neuromorphic system, which has been designed as a universal emulation back-end for neuroscientific modeling. We address the most essential limitations of this device in detail and study their effects on three prototypical benchmark network models within a well-defined, systematic workflow. For each network model, we start by defining quantifiable functionality measures by which we then assess the effects of typical hardware-specific distortion mechanisms, both in idealized software simulations and on the ESS. For those effects that cause unacceptable deviations from the original network dynamics, we suggest generic compensation mechanisms and demonstrate their effectiveness. Both the suggested workflow and the investigated compensation mechanisms are largely back-end independent and do not require additional hardware configurability beyond the one required to emulate the benchmark networks in the first place. We hereby provide a generic methodological environment for configurable neuromorphic devices that are targeted at emulating large-scale, functional neural networks.
DOI:doi:10.1371/journal.pone.0108590
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0108590
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108590
 DOI: https://doi.org/10.1371/journal.pone.0108590
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Action potentials
 Dwell time
 Membrane potential
 Network analysis
 Neural networks
 Neurons
 Simulation and modeling
 Synapses
K10plus-PPN:1724493671
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68616334   QR-Code
zum Seitenanfang