| Online-Ressource |
Verfasst von: | Cramer, Benjamin [VerfasserIn]  |
| Stöckel, David [VerfasserIn]  |
| Kreft, Markus [VerfasserIn]  |
| Wibral, Michael [VerfasserIn]  |
| Schemmel, Johannes [VerfasserIn]  |
| Meier, Karlheinz [VerfasserIn]  |
| Priesemann, Viola [VerfasserIn]  |
Titel: | Control of criticality and computation in spiking neuromorphic networks with plasticity |
Verf.angabe: | Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier & Viola Priesemann |
E-Jahr: | 2020 |
Jahr: | 05 June 2020 |
Umfang: | 11 S. |
Fussnoten: | Gesehen am 13.07.2020 |
Titel Quelle: | Enthalten in: Nature Communications |
Ort Quelle: | [London] : Nature Publishing Group UK, 2010 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 11(2020) Artikel-Nummer 2853, 11 Seiten |
ISSN Quelle: | 2041-1723 |
Abstract: | The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying complexity at - and away from critical network dynamics. To that end, we developed a plastic spiking network on a neuromorphic chip. We show that the distance to criticality can be easily adapted by changing the input strength, and then demonstrate a clear relation between criticality, task-performance and information-theoretic fingerprint. Whereas the information-theoretic measures all show that network capacity is maximal at criticality, only the complex tasks profit from criticality, whereas simple tasks suffer. Thereby, we challenge the general assumption that criticality would be beneficial for any task, and provide instead an understanding of how the collective network state should be tuned to task requirement. Designing efficient artificial networks able to quickly converge to optimal performance for a given task remains a challenge. Here, the authors demonstrate a relation between criticality, task-performance and information theoretic fingerprint in a spiking neuromorphic network with synaptic plasticity. |
DOI: | doi:10.1038/s41467-020-16548-3 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: http://dx.doi.org/10.1038/s41467-020-16548-3 |
| DOI: https://doi.org/10.1038/s41467-020-16548-3 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | avalanches |
| branching-processes |
| chaos |
| circuit |
| dynamics |
| edge |
| partial information decomposition |
K10plus-PPN: | 1724496751 |
Verknüpfungen: | → Zeitschrift |
Control of criticality and computation in spiking neuromorphic networks with plasticity / Cramer, Benjamin [VerfasserIn]; 05 June 2020 (Online-Ressource)