Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Köhler, Thomas [VerfasserIn]   i
 Haase, Sven [VerfasserIn]   i
 Bauer, Sebastian [VerfasserIn]   i
 Wasza, Jakob [VerfasserIn]   i
 Kilgus, Thomas [VerfasserIn]   i
 Maier-Hein, Lena [VerfasserIn]   i
 Stock, Christian [VerfasserIn]   i
 Hornegger, Joachim [VerfasserIn]   i
 Feußner, Hubertus [VerfasserIn]   i
Titel:Multi-sensor super-resolution for hybrid range imaging with application to 3-D endoscopy and open surgery
Verf.angabe:Thomas Köhler, Sven Haase, Sebastian Bauer, Jakob Wasza, Thomas Kilgus, Lena Maier-Hein, Christian Stock, Joachim Hornegger, Hubertus Feußner
E-Jahr:2015
Jahr:3 July 2015
Umfang:15 S.
Fussnoten:Gesehen am 15.07.2020
Titel Quelle:Enthalten in: Medical image analysis
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1996
Jahr Quelle:2015
Band/Heft Quelle:24(2015), 1, Seite 220-234
ISSN Quelle:1361-8423
Abstract:In this paper, we propose a multi-sensor super-resolution framework for hybrid imaging to super-resolve data from one modality by taking advantage of additional guidance images of a complementary modality. This concept is applied to hybrid 3-D range imaging in image-guided surgery, where high-quality photometric data is exploited to enhance range images of low spatial resolution. We formulate super-resolution based on the maximum a-posteriori (MAP) principle and reconstruct high-resolution range data from multiple low-resolution frames and complementary photometric information. Robust motion estimation as required for super-resolution is performed on photometric data to derive displacement fields of subpixel accuracy for the associated range images. For improved reconstruction of depth discontinuities, a novel adaptive regularizer exploiting correlations between both modalities is embedded to MAP estimation. We evaluated our method on synthetic data as well as ex-vivo images in open surgery and endoscopy. The proposed multi-sensor framework improves the peak signal-to-noise ratio by 2 dB and structural similarity by 0.03 on average compared to conventional single-sensor approaches. In ex-vivo experiments on porcine organs, our method achieves substantial improvements in terms of depth discontinuity reconstruction.
DOI:doi:10.1016/j.media.2015.06.011
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.media.2015.06.011
 Volltext: http://www.sciencedirect.com/science/article/pii/S1361841515000985
 DOI: https://doi.org/10.1016/j.media.2015.06.011
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:3-D endoscopy
 Hybrid range imaging
 Open surgery
 Sensor fusion
 Super-resolution
K10plus-PPN:1724796151
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68617229   QR-Code
zum Seitenanfang