| Online-Ressource |
Verfasst von: | Lohse, Christian [VerfasserIn]  |
| Bassett, Danielle S. [VerfasserIn]  |
| Lim, Kelvin O. [VerfasserIn]  |
| Carlson, Jean M. [VerfasserIn]  |
Titel: | Resolving anatomical and functional structure in human brain organization |
Titelzusatz: | identifying mesoscale organization in weighted network representations |
Verf.angabe: | Christian Lohse, Danielle S. Bassett, Kelvin O. Lim, Jean M. Carlson |
E-Jahr: | 2014 |
Jahr: | October 2, 2014 |
Fussnoten: | Gesehen am 16.07.2020 |
Titel Quelle: | Enthalten in: Public Library of SciencePLoS Computational Biology |
Ort Quelle: | San Francisco, Calif. : Public Library of Science, 2005 |
Jahr Quelle: | 2014 |
Band/Heft Quelle: | 10(2014,10) Artikel-Nummer e1003712, 17 Seiten |
ISSN Quelle: | 1553-7358 |
Abstract: | Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. |
DOI: | doi:10.1371/journal.pcbi.1003712 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1371/journal.pcbi.1003712 |
| Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003712 |
| DOI: https://doi.org/10.1371/journal.pcbi.1003712 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Artificial neural networks |
| Community structure |
| Fractals |
| Functional magnetic resonance imaging |
| Graphs |
| Network analysis |
| Neural networks |
| Schizophrenia |
K10plus-PPN: | 1725019639 |
Verknüpfungen: | → Zeitschrift |
Resolving anatomical and functional structure in human brain organization / Lohse, Christian [VerfasserIn]; October 2, 2014 (Online-Ressource)