Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Götte, Heiko [VerfasserIn]   i
 Kirchner, Marietta [VerfasserIn]   i
 Kieser, Meinhard [VerfasserIn]   i
Titel:Adjustment for exploratory cut-off selection in randomized clinical trials with survival endpoint
Verf.angabe:Heiko Götte, Marietta Kirchner, Meinhard Kieser
Jahr:2020
Jahr des Originals:2019
Umfang:16 S.
Fussnoten:Gesehen am 17.07.2020 ; First published: 07 October 2019
Titel Quelle:Enthalten in: Biometrical journal
Ort Quelle:Berlin : Wiley-VCH, 1977
Jahr Quelle:2020
Band/Heft Quelle:62(2020), 3, Seite 627-642
ISSN Quelle:1521-4036
Abstract:Defining the target population based on predictive biomarkers plays an important role during clinical development. After establishing a relationship between a biomarker candidate and response to treatment in exploratory phases, a subsequent confirmatory trial ideally involves only subjects with high potential of benefiting from the new compound. In order to identify those subjects in case of a continuous biomarker, a cut-off is needed. Usually, a cut-off is chosen that resulted in a subgroup with a large observed treatment effect in an exploratory trial. However, such a data-driven selection may lead to overoptimistic expectations for the subsequent confirmatory trial. Treatment effect estimates, probability of success, and posterior probabilities are useful measures for deciding whether or not to conduct a confirmatory trial enrolling the biomarker-defined population. These measures need to be adjusted for selection bias. We extend previously introduced Approximate Bayesian Computation techniques for adjustment of subgroup selection bias to a time-to-event setting with cut-off selection. Challenges in this setting are that treatment effects become time-dependent and that subsets are defined by the biomarker distribution. Simulation studies show that the proposed method provides adjusted statistical measures which are superior to naïve Maximum Likelihood estimators as well as simple shrinkage estimators.
DOI:doi:10.1002/bimj.201800302
URL:Volltext: https://doi.org/10.1002/bimj.201800302
 Volltext: https://www.onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201800302
 DOI: https://doi.org/10.1002/bimj.201800302
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:approximate Bayesian computation
 cut-off selection
 mixed exponential distribution
 probability of success
 time to event
K10plus-PPN:1725080966
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68618073   QR-Code
zum Seitenanfang