Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kirches, Christian [VerfasserIn]   i
 Lenders, Felix [VerfasserIn]   i
 Manns, Paul [VerfasserIn]   i
Titel:Approximation properties and tight bounds for constrained mixed-integer optimal control
Verf.angabe:C. Kirches, F. Lenders, and P. Manns
E-Jahr:2020
Jahr:May 20,2020
Umfang:32 S.
Fussnoten:Gesehen am 05.08.2020
Titel Quelle:Enthalten in: Society for Industrial and Applied MathematicsSIAM journal on control and optimization
Ort Quelle:Philadelphia, Pa. : Soc., 1966
Jahr Quelle:2020
Band/Heft Quelle:58(2020), 3, Seite 1371-1402
ISSN Quelle:1095-7138
Abstract:We extend recent work on solving mixed-integer nonlinear optimal control problems (MIOCPs) to the case of integer control functions subject to constraints that involve a pointwise coupling of the state with the integer controls. We extend a theorem due to [S. Sager, H. Bock, and M. Diehl, Math. Program. Ser. A, 133 (2012), pp. 1-23] to the case of MIOCPs with constraints on the integer control and show that the integrality gap vanishes in function space when the coarseness of the rounding grid is driven to zero even after adding constraints of this type. For the time-discretized problem, we extend a sum-up rounding (SUR) scheme due to [S. Sager, C. Reinelt, and H. Bock, Math. Program. Ser. A, 118 (2009), pp. 109-149] to the new problem class. Our scheme permits one to constructively obtain an epsilon-feasible and epsilon-optimal binary feasible control. We derive new, tight upper bounds on the integer control approximation error made by SUR. For unconstrained binary controls on equidistant grids, we reduce the approximation error bound from O(vertical bar Omega vertical bar) to O(log vertical bar Omega vertical bar) asymptotically for vertical bar Omega vertical bar -> infinity and a fixed coarseness of the rounding grid, where vertical bar Omega vertical bar is the number of binary controls. For constrained binary controls, we show that the approximation problem is more difficult, and we give a proof of an approximation error bound of complexity O(vertical bar Omega vertical bar). A numerical example compares our approach to a state-of-the-art mixed-integer nonlinear programming solver and illustrates the applicability of our results when solving MIOCPs using the direct and simultaneous approach.
DOI:doi:10.1137/18M1182917
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1137/18M1182917
 DOI: https://doi.org/10.1137/18M1182917
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:approximation theory
 mathematical programs
 mixed-integer optimization
 optimal control
 optimization
 ordinary differential equations
 switched dynamic systems
 vanishing constraints
K10plus-PPN:1726253813
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68624317   QR-Code
zum Seitenanfang