Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hünemohr, Nora [VerfasserIn]   i
 Paganetti, Harald [VerfasserIn]   i
 Greilich, Steffen [VerfasserIn]   i
 Jäkel, Oliver [VerfasserIn]   i
 Seco, Joao [VerfasserIn]   i
Titel:Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy
Verf.angabe:Nora Hünemohr, Harald Paganetti, Steffen Greilich, Oliver Jäkel, Joao Seco
E-Jahr:2014
Jahr:23 May 2014
Fussnoten:Gesehen am 18.08.2020
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2014
Band/Heft Quelle:41(2014,6) Artikel-Nummer 061714, 14 Seiten
ISSN Quelle:2473-4209
 1522-8541
Abstract:Purpose: The authors describe a novel method of predicting mass density and elemental mass fractions of tissues from dual energy CT (DECT) data for Monte Carlo (MC) based dose planning. Methods: The relative electron density ϱe and effective atomic number Zeff are calculated for 71 tabulated tissue compositions. For MC simulations, the mass density is derived via one linear fit in the ϱe that covers the entire range of tissue compositions (except lung tissue). Elemental mass fractions are predicted from the ϱe and the Zeff in combination. Since particle therapy dose planning and verification is especially sensitive to accurate material assignment, differences to the ground truth are further analyzed for mass density, I-value predictions, and stopping power ratios (SPR) for ions. Dose studies with monoenergetic proton and carbon ions in 12 tissues which showed the largest differences of single energy CT (SECT) to DECT are presented with respect to range uncertainties. The standard approach (SECT) and the new DECT approach are compared to reference Bragg peak positions. Results: Mean deviations to ground truth in mass density predictions could be reduced for soft tissue from (0.5±0.6)% (SECT) to (0.2±0.2)% with the DECT method. Maximum SPR deviations could be reduced significantly for soft tissue from 3.1% (SECT) to 0.7% (DECT) and for bone tissue from 0.8% to 0.1%. MeanI-value deviations could be reduced for soft tissue from (1.1±1.4%, SECT) to (0.4±0.3%) with the presented method. Predictions of elemental composition were improved for every element. Mean and maximum deviations from ground truth of all elemental mass fractions could be reduced by at least a half with DECT compared to SECT (except soft tissue hydrogen and nitrogen where the reduction was slightly smaller). The carbon and oxygen mass fraction predictions profit especially from the DECT information. Dose studies showed that most of the 12 selected tissues would profit significantly (up to 2.2%) from DECT material decomposition with no noise present. The ϱe associated with an absolute noise of ±0.01 and Zeff associated with an absolute noise of ±0.2 resulted in ±10% standard variation in the carbon and oxygen mass fraction prediction. Conclusions: Accurate stopping power prediction is mainly determined by the correct mass density prediction. Theoretical improvements in range predictions with DECT data in the order of 0.1%-2.1% were observed. Further work is needed to quantify the potential improvements from DECT compared to SECT in measured image data associated with artifacts and noise.
DOI:doi:10.1118/1.4875976
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1118/1.4875976
 Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4875976
 DOI: https://doi.org/10.1118/1.4875976
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Applications
 Biological material
 bone
 Calibrating of instruments or apparatus
 calibration
 Carbon
 Collisional energy loss
 composition
 Computed tomography
 Computerised tomographs
 computerised tomography
 Digital computing or data processing equipment or methods
 Dose-volume analysis
 dosimetry
 Dosimetry
 Dosimetry/exposure assessment
 dual energy CT
 e.g. blood
 e.g. from bit-mapped to bit-mapped creating a similar image
 Haemocytometers
 Image data processing or generation
 image denoising
 Image enhancement or restoration
 in general
 Lungs
 Medical image noise
 medical image processing
 Monte Carlo
 Monte Carlo methods
 Noise
 Protons
 radiation therapy
 Radiation therapy
 range uncertainty
 Scintigraphy
 specially adapted for specific applications
 stoichiometric calibration
 Testing or calibrating of apparatus or arrangements provided for in groups G01D1/00 to G01D15/00
 Tissues
 urine
 Verification
 WEPL
K10plus-PPN:1727331893
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68628290   QR-Code
zum Seitenanfang