Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Baran, Sándor [VerfasserIn]   i
 Lerch, Sebastian [VerfasserIn]   i
Titel:Mixture EMOS model for calibrating ensemble forecasts of wind speed
Verf.angabe:S. Baran and S. Lerch
E-Jahr:2016
Jahr:17 January 2016
Umfang:5 S.
Fussnoten:Gesehen am 19.08.2020
Titel Quelle:Enthalten in: Environmetrics
Ort Quelle:Chichester, West Sussex : Wiley, 1991
Jahr Quelle:2016
Band/Heft Quelle:27(2016), 2, Seite 116-130
ISSN Quelle:1099-095X
Abstract:Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.
DOI:doi:10.1002/env.2380
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1002/env.2380
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.2380
 DOI: https://doi.org/10.1002/env.2380
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:continuous ranked probability score
 ensemble calibration
 ensemble model output statistics
 log-normal distribution
 truncated normal distribution
K10plus-PPN:1727457757
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68628783   QR-Code
zum Seitenanfang