Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Fronza, Raffaele [VerfasserIn]   i
 Lusic, Marina [VerfasserIn]   i
 Schmidt, Manfred [VerfasserIn]   i
 Lucic, Bojana [VerfasserIn]   i
Titel:Spatial-temporal variations in atmospheric factors contribute to SARS-CoV-2 outbreak
Verf.angabe:Raffaele Fronza, Marina Lusic, Manfred Schmidt and Bojana Lucic
E-Jahr:2020
Jahr:27 May 2020
Fussnoten:Gesehen am 26.08.2020
Titel Quelle:Enthalten in: Viruses
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2020
Band/Heft Quelle:12(2020,6) Artikel-Nummer 588, 15 Seiten
ISSN Quelle:1999-4915
Abstract:The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has reached over five million confirmed cases worldwide, and numbers are still growing at a fast rate. Despite the wide outbreak of the infection, a remarkable asymmetry is observed in the number of cases and in the distribution of the severity of the COVID-19 symptoms in patients with respect to the countries/regions. In the early stages of a new pathogen outbreak, it is critical to understand the dynamics of the infection transmission, in order to follow contagion over time and project the epidemiological situation in the near future. While it is possible to reason that observed variation in the number and severity of cases stems from the initial number of infected individuals, the difference in the testing policies and social aspects of community transmissions, the factors that could explain high discrepancy in areas with a similar level of healthcare still remain unknown. Here, we introduce a binary classifier based on an artificial neural network that can help in explaining those differences and that can be used to support the design of containment policies. We found that SARS-CoV-2 infection frequency positively correlates with particulate air pollutants, and specifically with particulate matter 2.5 (PM2.5), while ozone gas is oppositely related with the number of infected individuals. We propose that atmospheric air pollutants could thus serve as surrogate markers to complement the infection outbreak anticipation.
DOI:doi:10.3390/v12060588
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3390/v12060588
 Volltext: https://www.mdpi.com/1999-4915/12/6/588
 DOI: https://doi.org/10.3390/v12060588
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:infection dynamics
 ozone
 PM<sub>2.5</sub>
 SARS-CoV-2
 viral outbreak
K10plus-PPN:1727804961
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68631337   QR-Code
zum Seitenanfang