Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Li, Hao [VerfasserIn]   i
 Herfort, Benjamin [VerfasserIn]   i
 Huang, Wei [VerfasserIn]   i
 Zia, Mohammed [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:Exploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique
Verf.angabe:Hao Li, Benjamin Herfort, Wei Huang, Mohammed Zia, Alexander Zipf
E-Jahr:2020
Jahr:07 June 2020
Umfang:11 S.
Fussnoten:Gesehen am 26.08.2020
Titel Quelle:Enthalten in: International Society for Photogrammetry and Remote SensingISPRS journal of photogrammetry and remote sensing
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1989
Jahr Quelle:2020
Band/Heft Quelle:166(2020), Seite 41-51
ISSN Quelle:0924-2716
Abstract:Accurate and detailed geographical information digitizing human activity patterns plays an essential role in response to natural disasters. Volunteered geographical information, in particular OpenStreetMap (OSM), shows great potential in providing the knowledge of human settlements to support humanitarian aid, while the availability and quality of OSM remains a major concern. The majority of existing works in assessing OSM data quality focus on either extrinsic or intrinsic analysis, which is insufficient to fulfill the humanitarian mapping scenario to a certain degree. This paper aims to explore OSM missing built-up areas from an integrative perspective of social sensing and remote sensing. First, applying hierarchical DBSCAN clustering algorithm, the clusters of geo-tagged tweets are generated as proxies of human active regions. Then a deep learning based model fine-tuned on existing OSM data is proposed to further map the missing built-up areas. Hit by Cyclone Idai and Kenneth in 2019, the Republic of Mozambique is selected as the study area to evaluate the proposed method at a national scale. As a result, 13 OSM missing built-up areas are identified and mapped with an over 90% overall accuracy, being competitive compared to state-of-the-art products, which confirms the effectiveness of the proposed method.
DOI:doi:10.1016/j.isprsjprs.2020.05.007
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.isprsjprs.2020.05.007
 Volltext: http://www.sciencedirect.com/science/article/pii/S0924271620301271
 DOI: https://doi.org/10.1016/j.isprsjprs.2020.05.007
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Data quality
 Deep learning
 Hierarchical DBSCAN
 Humanitarian mapping
 OpenStreetMap
 Twitter
 Volunteered geographical information
K10plus-PPN:1727815505
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68631373   QR-Code
zum Seitenanfang