| Online-Ressource |
Verfasst von: | Kommoss, Katharina [VerfasserIn]  |
| Winkler, Julia K. [VerfasserIn]  |
| Müller-Christmann, Christine [VerfasserIn]  |
| Niedermair, Felicitas [VerfasserIn]  |
| Toberer, Ferdinand [VerfasserIn]  |
| Buhl, Timo [VerfasserIn]  |
| Enk, Alexander [VerfasserIn]  |
| Blum, Andreas [VerfasserIn]  |
| Rosenberger, Albert [VerfasserIn]  |
| Hänßle, Holger [VerfasserIn]  |
Titel: | Past and present of computer-assisted dermoscopic diagnosis |
Titelzusatz: | performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions |
Verf.angabe: | Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle |
E-Jahr: | 2020 |
Jahr: | 10 June 2020 |
Umfang: | 8 S. |
Fussnoten: | Gesehen am 27.08.2020 |
Titel Quelle: | Enthalten in: European journal of cancer |
Ort Quelle: | Amsterdam [u.a.] : Elsevier, 1992 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 135(2020), Seite 39-46 |
ISSN Quelle: | 1879-0852 |
Abstract: | Background - Convolutional neural networks (CNNs) have shown a dermatologist-level performance in the classification of skin lesions. We aimed to deliver a head-to-head comparison of a conventional image analyser (CIA), which depends on segmentation and weighting of handcrafted features, to a CNN trained by deep learning. - Methods - Cross-sectional study using a real-world, prospectively acquired, dermoscopic dataset of 1981 skin lesions to compare the diagnostic performance of a market-approved CNN (Moleanalyzer-Pro™, developed in 2018) to a CIA (Moleanalyzer-3™/Dynamole™; developed in 2004, all FotoFinder Systems Inc, Germany). As a reference standard, we used histopathological diagnoses (n = 785) or, in non-excised benign lesions (n = 1196), expert consensus plus an uneventful follow-up by sequential digital dermoscopy for at least 2 years. - Results - A total of 281 malignant lesions and 1700 benign lesions from 435 patients (62.2% male, mean age: 52 years) were prospectively imaged. The CNN showed a sensitivity of 77.6% (95% confidence interval [CI]: [72.4%-82.1%]), specificity of 95.3% (95% CI: [94.2%-96.2%]), and receiver operating characteristic (ROC)-area under the curve (AUC) of 0.945 (95% CI: [0.930-0.961]). In contrast, the CIA achieved a sensitivity of 53.4% (95% CI: [47.5%-59.1%]), specificity of 86.6% (95% CI: [84.9%-88.1%]) and ROC-AUC of 0.738 (95% CI: [0.701-0.774]). The data set included melanomas originally diagnosed by dynamic changes during sequential digital dermoscopy (52 of 201, 20.6%), which reduced the sensitivities of both classifiers. Pairwise comparisons of sensitivities, specificities, and ROC-AUCs indicated a clear outperformance by the CNN (all p < 0.001). - Conclusions - The superior diagnostic performance of the CNN argues against a continued application of former CIAs as an aide to physicians’ clinical management decisions. |
DOI: | doi:10.1016/j.ejca.2020.04.043 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1016/j.ejca.2020.04.043 |
| Volltext: http://www.sciencedirect.com/science/article/pii/S0959804920302483 |
| DOI: https://doi.org/10.1016/j.ejca.2020.04.043 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Automated melanoma detection |
| Computer-assisted diagnosis |
| Convolutional neural network |
| Deep learning |
| Dermoscopy |
| Skin cancer |
| Skin lesions |
K10plus-PPN: | 172791290X |
Verknüpfungen: | → Zeitschrift |