Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kommoss, Katharina [VerfasserIn]   i
 Winkler, Julia K. [VerfasserIn]   i
 Müller-Christmann, Christine [VerfasserIn]   i
 Niedermair, Felicitas [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Buhl, Timo [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Blum, Andreas [VerfasserIn]   i
 Rosenberger, Albert [VerfasserIn]   i
 Hänßle, Holger [VerfasserIn]   i
Titel:Past and present of computer-assisted dermoscopic diagnosis
Titelzusatz:performance of a conventional image analyser versus a convolutional neural network in a prospective data set of 1,981 skin lesions
Verf.angabe:Katharina Sies, Julia K. Winkler, Christine Fink, Felicitas Bardehle, Ferdinand Toberer, Timo Buhl, Alexander Enk, Andreas Blum, Albert Rosenberger, Holger A. Haenssle
E-Jahr:2020
Jahr:10 June 2020
Umfang:8 S.
Fussnoten:Gesehen am 27.08.2020
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2020
Band/Heft Quelle:135(2020), Seite 39-46
ISSN Quelle:1879-0852
Abstract:Background - Convolutional neural networks (CNNs) have shown a dermatologist-level performance in the classification of skin lesions. We aimed to deliver a head-to-head comparison of a conventional image analyser (CIA), which depends on segmentation and weighting of handcrafted features, to a CNN trained by deep learning. - Methods - Cross-sectional study using a real-world, prospectively acquired, dermoscopic dataset of 1981 skin lesions to compare the diagnostic performance of a market-approved CNN (Moleanalyzer-Pro™, developed in 2018) to a CIA (Moleanalyzer-3™/Dynamole™; developed in 2004, all FotoFinder Systems Inc, Germany). As a reference standard, we used histopathological diagnoses (n = 785) or, in non-excised benign lesions (n = 1196), expert consensus plus an uneventful follow-up by sequential digital dermoscopy for at least 2 years. - Results - A total of 281 malignant lesions and 1700 benign lesions from 435 patients (62.2% male, mean age: 52 years) were prospectively imaged. The CNN showed a sensitivity of 77.6% (95% confidence interval [CI]: [72.4%-82.1%]), specificity of 95.3% (95% CI: [94.2%-96.2%]), and receiver operating characteristic (ROC)-area under the curve (AUC) of 0.945 (95% CI: [0.930-0.961]). In contrast, the CIA achieved a sensitivity of 53.4% (95% CI: [47.5%-59.1%]), specificity of 86.6% (95% CI: [84.9%-88.1%]) and ROC-AUC of 0.738 (95% CI: [0.701-0.774]). The data set included melanomas originally diagnosed by dynamic changes during sequential digital dermoscopy (52 of 201, 20.6%), which reduced the sensitivities of both classifiers. Pairwise comparisons of sensitivities, specificities, and ROC-AUCs indicated a clear outperformance by the CNN (all p < 0.001). - Conclusions - The superior diagnostic performance of the CNN argues against a continued application of former CIAs as an aide to physicians’ clinical management decisions.
DOI:doi:10.1016/j.ejca.2020.04.043
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2020.04.043
 Volltext: http://www.sciencedirect.com/science/article/pii/S0959804920302483
 DOI: https://doi.org/10.1016/j.ejca.2020.04.043
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Automated melanoma detection
 Computer-assisted diagnosis
 Convolutional neural network
 Deep learning
 Dermoscopy
 Skin cancer
 Skin lesions
K10plus-PPN:172791290X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68631892   QR-Code
zum Seitenanfang