Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Shen, Ruobing [VerfasserIn]   i
 Tang, Bo [VerfasserIn]   i
 Lodi, Andrea [VerfasserIn]   i
 Tramontani, Andrea [VerfasserIn]   i
 Ben Ayed, Ismail [VerfasserIn]   i
Titel:An ILP model for multi-label MRFs with connectivity constraints
Verf.angabe:Ruobing Shen, Bo Tang, Andrea Lodi, Andrea Tramontani, Ismail Ben Ayed
E-Jahr:2020
Jahr:27 May 2020
Umfang:9 S.
Fussnoten:Gesehen am 27.08.2020
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on image processing
Ort Quelle:New York, NY : IEEE, 1992
Jahr Quelle:2020
Band/Heft Quelle:29(2020), Seite 6909-6917
ISSN Quelle:1941-0042
Abstract:Integer Linear Programming (ILP) formulations of multi-label Markov random fields (MRFs) models with global connectivity priors were investigated previously in computer vision. In these works, only Linear Programming (LP) relaxations [1] or simplified versions [2] of the problem were solved. This paper investigates the ILP of MRF with exact connectivity priors via a branch-and-cut method, which provably finds globally optimal solutions. It enforces connectivity priors iteratively by a cutting plane method, and provides feasible solutions with a guarantee on sub-optimality even if we terminate it earlier. The proposed ILP can be applied as a post-processing method on top of any existing multi-label segmentation approach. As it provides globally optimal solution, it can be used off-line to serve as quality check for any fast on-line algorithm. Furthermore, the scribble based model presented in this paper could be potentially used to generate ground-truth proposals for any deep learning based segmentation. We demonstrate the power and usefulness of our model by extensive experiments on the BSDS500 and PASCAL VOC dataset. The experiments show that our proposed model achieves great performance, yielding provably global optimum in most instances and that provably good optimization solutions also provide good segmentation accuracy, even with the limited computing time of few seconds.
DOI:doi:10.1109/TIP.2020.2995056
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TIP.2020.2995056
 DOI: https://doi.org/10.1109/TIP.2020.2995056
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computational modeling
 Computer vision
 energy minimization
 Image segmentation
 integer programming
 Labeling
 Machine learning
 Markov random fields
 markov random-fields
 Optimization
 Particle separators
 Semantics
K10plus-PPN:172791516X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68631906   QR-Code
zum Seitenanfang