Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Garbade, Sven [VerfasserIn]   i
 Zielonka, Matthias [VerfasserIn]   i
 Komatzsuzaki, Shoko [VerfasserIn]   i
 Kölker, Stefan [VerfasserIn]   i
 Hoffmann, Georg F. [VerfasserIn]   i
 Hinderhofer, Katrin [VerfasserIn]   i
 Mountford, William K. [VerfasserIn]   i
 Mengel, Eugen [VerfasserIn]   i
 Sláma, Tomáš [VerfasserIn]   i
 Mechler, Konstantin [VerfasserIn]   i
 Ries, Markus [VerfasserIn]   i
Titel:Quantitative retrospective natural history modeling for orphan drug development
Verf.angabe:Sven F. Garbade, Matthias Zielonka, Shoko Komatzsuzaki, Stefan Kölker, Georg F. Hoffmann, Katrin Hinderhofer, William K. Mountford, Eugen Mengel, Tomáš Sláma, Konstantin Mechler, and Markus Ries
Jahr:2021
Umfang:11 S.
Fussnoten:Gesehen am 28.08.2020
Titel Quelle:Enthalten in: Journal of inherited metabolic disease
Ort Quelle:Hoboken, NJ : Wiley, 1978
Jahr Quelle:2021
Band/Heft Quelle:44(2021), 1, Seite 99-109
ISSN Quelle:1573-2665
Abstract:The natural history of most rare diseases is incompletely understood and usually relies on studies with low level of evidence. Consistent with the goals for future research of rare disease research set by the International Rare Diseases Research Consortium in 2017, the purpose of this paper is to review the recently developed method of quantitative retrospective natural history modelling (QUARNAM) and to illustrate its usefulness through didactically selected analyses examples in an overall population of 849 patients worldwide with seven (ultra-) rare neurogenetic disorders. A quantitative understanding of the natural history of the disease is fundamental for the development of specific interventions and counselling afflicted families. QUARNAM has a similar relationship to a published case study as a meta-analysis has to an individual published study. QUARNAM relies on sophisticated statistical analyses of published case reports focusing on four research questions: How long does it take to make the diagnosis? How long do patients live? Which factors predict disease severity (eg, genotypes, signs/symptoms, biomarkers)? Where can patients be recruited for studies? Useful statistical techniques include Kaplan-Meier estimates, cluster analysis, regression techniques, binary decisions trees, word clouds, and geographic mapping. In comparison to other natural history study methods (prospective studies or retrospective studies such as chart reviews), QUARNAM can provide fast information on hard clinical endpoints (ie, survival, diagnostic delay) with a lower effort. The choice of method for a particular drug development program may be driven by the research question and may encompass combinatory approaches. This article is protected by copyright. All rights reserved.
DOI:doi:10.1002/jimd.12304
URL:kostenfrei: Volltext: https://doi.org/10.1002/jimd.12304
 DOI: https://doi.org/10.1002/jimd.12304
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 drug development
 innovative statistical techniques
 International Rare Diseases Research Consortium
 modelling and simulation
 natural history
 orphan drugs
 rare disease
K10plus-PPN:1727999770
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68632356   QR-Code
zum Seitenanfang