Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Nguyen, Hai [VerfasserIn]   i
 Katzfuß, Matthias [VerfasserIn]   i
 Cressie, Noel [VerfasserIn]   i
 Braverman, Amy [VerfasserIn]   i
Titel:Spatio-temporal data fusion for very large remote sensing datasets
Verf.angabe:Hai Nguyen, Matthias Katzfuss, Noel Cressie & Amy Braverman
E-Jahr:2014
Jahr:16 May 2014
Umfang:12 S.
Fussnoten:Gesehen am 02.09.2020
Titel Quelle:Enthalten in: Technometrics
Ort Quelle:Abingdon : Taylor & Francis, 1959
Jahr Quelle:2014
Band/Heft Quelle:56(2014), 2, Seite 174-185
ISSN Quelle:1537-2723
Abstract:Developing global maps of carbon dioxide (CO2) mole fraction (in units of parts per million) near the Earth’s surface can help identify locations where major amounts of CO2 are entering and exiting the atmosphere, thus providing valuable insights into the carbon cycle and mitigating the greenhouse effect of atmospheric CO2. Existing satellite remote sensing data do not provide measurements of the CO2 mole fraction near the surface. Japan’s Greenhouse gases Observing SATellite (GOSAT) is sensitive to average CO2 over the entire column, and NASA’s Atmospheric InfraRed Sounder (AIRS) is sensitive to CO2 in the middle troposphere. One might expect that lower-atmospheric CO2 could be inferred by differencing GOSAT column-average and AIRS mid-tropospheric data. However, the two instruments have different footprints, measurement-error characteristics, and data coverages. In addition, the spatio-temporal domains are large, and the AIRS dataset is massive. In this article, we describe a spatio-temporal data-fusion (STDF) methodology based on reduced-dimensional Kalman smoothing. Our STDF is able to combine the complementary GOSAT and AIRS datasets to optimally estimate lower-atmospheric CO2 mole fraction over the whole globe. Further, it is designed for massive remote sensing datasets and accounts for differences in instrument footprint, measurement-error characteristics, and data coverages. This article has supplementary material online.
DOI:doi:10.1080/00401706.2013.831774
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1080/00401706.2013.831774
 DOI: https://doi.org/10.1080/00401706.2013.831774
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:EM algorithm
 Fixed rank smoothing
 Kalman filter
 Multivariate geostatistics
 Spatial random effects model
K10plus-PPN:172863444X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68634028   QR-Code
zum Seitenanfang