Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Li, Hao [VerfasserIn]   i
 Ghamisi, Pedram [VerfasserIn]   i
 Rasti, Behnood [VerfasserIn]   i
 Wu, Zhaoyan [VerfasserIn]   i
 Shapiro, Aurelie [VerfasserIn]   i
 Schultz, Michael [VerfasserIn]   i
 Zipf, Alexander [VerfasserIn]   i
Titel:A multi-sensor fusion framework based on coupled residual convolutional neural networks
Verf.angabe:Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf
E-Jahr:2020
Jahr:26 June 2020
Umfang:21 S.
Fussnoten:Gesehen am 07.09.2020
Titel Quelle:Enthalten in: Remote sensing
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2020
Band/Heft Quelle:12(2020,12) Artikel-Nummer 2067, 21 Seiten
ISSN Quelle:2072-4292
Abstract:Multi-sensor remote sensing image classification has been considerably improved by deep learning feature extraction and classification networks. In this paper, we propose a novel multi-sensor fusion framework for the fusion of diverse remote sensing data sources. The novelty of this paper is grounded in three important design innovations: 1- a unique adaptation of the coupled residual networks to address multi-sensor data classification; 2- a smart auxiliary training via adjusting the loss function to address classifications with limited samples; and 3- a unique design of the residual blocks to reduce the computational complexity while preserving the discriminative characteristics of multi-sensor features. The proposed classification framework is evaluated using three different remote sensing datasets: the urban Houston university datasets (including Houston 2013 and the training portion of Houston 2018) and the rural Trento dataset. The proposed framework achieves high overall accuracies of 93.57%, 81.20%, and 98.81% on Houston 2013, the training portion of Houston 2018, and Trento datasets, respectively. Additionally, the experimental results demonstrate considerable improvements in classification accuracies compared with the existing state-of-the-art methods.
DOI:doi:10.3390/rs12122067
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3390/rs12122067
 Volltext: https://www.mdpi.com/2072-4292/12/12/2067
 DOI: https://doi.org/10.3390/rs12122067
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:auxiliary loss function
 convolutional neural networks (CNNs)
 data fusion
 deep learning
 hyperspectral image classification
 multi-sensor fusion
 residual learning
K10plus-PPN:1728955556
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68635112   QR-Code
zum Seitenanfang