Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kriegsmann, Mark [VerfasserIn]   i
 Haag, Christian [VerfasserIn]   i
 Weis, Cleo-Aron Thias [VerfasserIn]   i
 Steinbuß, Georg [VerfasserIn]   i
 Warth, Arne [VerfasserIn]   i
 Zgorzelski, Christiane [VerfasserIn]   i
 Muley, Thomas [VerfasserIn]   i
 Winter, Hauke [VerfasserIn]   i
 Eichhorn, Martin E. [VerfasserIn]   i
 Eichhorn, Florian [VerfasserIn]   i
 Kriegsmann, Jörg [VerfasserIn]   i
 Christopolous, Petros [VerfasserIn]   i
 Thomas, Michael [VerfasserIn]   i
 Witzens-Harig, Mathias [VerfasserIn]   i
 Sinn, Peter [VerfasserIn]   i
 Winterfeld, Moritz von [VerfasserIn]   i
 Heußel, Claus Peter [VerfasserIn]   i
 Herth, Felix [VerfasserIn]   i
 Klauschen, Frederick [VerfasserIn]   i
 Stenzinger, Albrecht [VerfasserIn]   i
 Kriegsmann, Katharina [VerfasserIn]   i
Titel:Deep learning for the classification of small-cell and non-small-cell lung cancer
Verf.angabe:Mark Kriegsmann, Christian Haag, Cleo-Aron Weis, Georg Steinbuss, Arne Warth, Christiane Zgorzelski, Thomas Muley, Hauke Winter, Martin E. Eichhorn, Florian Eichhorn, Joerg Kriegsmann, Petros Christopolous, Michael Thomas, Mathias Witzens-Harig, Peter Sinn, Moritz von Winterfeld, Claus Peter Heussel, Felix J.F. Herth, Frederick Klauschen, Albrecht Stenzinger and Katharina Kriegsmann
E-Jahr:2020
Jahr:17 June 2020
Umfang:16 S.
Fussnoten:Gesehen am 10.09.2020
Titel Quelle:Enthalten in: Cancers
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2020
Band/Heft Quelle:12(2020,6) Artikel-Nummer 1604, 16 Seiten
ISSN Quelle:2072-6694
Abstract:Reliable entity subtyping is paramount for therapy stratification in lung cancer. Morphological evaluation remains the basis for entity subtyping and directs the application of additional methods such as immunohistochemistry (IHC). The decision of whether to perform IHC for subtyping is subjective, and access to IHC is not available worldwide. Thus, the application of additional methods to support morphological entity subtyping is desirable. Therefore, the ability of convolutional neuronal networks (CNNs) to classify the most common lung cancer subtypes, pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell lung cancer (SCLC), was evaluated. A cohort of 80 ADC, 80 SqCC, 80 SCLC, and 30 skeletal muscle specimens was assembled; slides were scanned; tumor areas were annotated; image patches were extracted; and cases were randomly assigned to a training, validation or test set. Multiple CNN architectures (VGG16, InceptionV3, and InceptionResNetV2) were trained and optimized to classify the four entities. A quality control (QC) metric was established. An optimized InceptionV3 CNN architecture yielded the highest classification accuracy and was used for the classification of the test set. Image patch and patient-based CNN classification results were 95% and 100% in the test set after the application of strict QC. Misclassified cases mainly included ADC and SqCC. The QC metric identified cases that needed further IHC for definite entity subtyping. The study highlights the potential and limitations of CNN image classification models for tumor differentiation.
DOI:doi:10.3390/cancers12061604
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3390/cancers12061604
 Volltext: https://www.mdpi.com/2072-6694/12/6/1604
 DOI: https://doi.org/10.3390/cancers12061604
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 deep learning
 histology
 lung cancer
 non-small cell lung cancer
 small cell lung cancer
K10plus-PPN:1729854923
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68636375   QR-Code
zum Seitenanfang