Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Brachmann, Eric [VerfasserIn]   i
 Rother, Carsten [VerfasserIn]   i
Titel:Expert Sample Consensus applied to camera re-localization
Verf.angabe:Eric Brachmann and Carsten Rother
Jahr:2019
Umfang:13 S.
Fussnoten:Gesehen am 14.09.2020
Titel Quelle:Enthalten in: De.arxiv.org
Ort Quelle:[S.l.] : Arxiv.org, 1991
Jahr Quelle:2019
Band/Heft Quelle:(2019) Artikel-Nummer 1908.02484, 13 Seiten
Abstract:Fitting model parameters to a set of noisy data points is a common problem in computer vision. In this work, we fit the 6D camera pose to a set of noisy correspondences between the 2D input image and a known 3D environment. We estimate these correspondences from the image using a neural network. Since the correspondences often contain outliers, we utilize a robust estimator such as Random Sample Consensus (RANSAC) or Differentiable RANSAC (DSAC) to fit the pose parameters. When the problem domain, e.g. the space of all 2D-3D correspondences, is large or ambiguous, a single network does not cover the domain well. Mixture of Experts (MoE) is a popular strategy to divide a problem domain among an ensemble of specialized networks, so called experts, where a gating network decides which expert is responsible for a given input. In this work, we introduce Expert Sample Consensus (ESAC), which integrates DSAC in a MoE. Our main technical contribution is an efficient method to train ESAC jointly and end-to-end. We demonstrate experimentally that ESAC handles two real-world problems better than competing methods, i.e. scalability and ambiguity. We apply ESAC to fitting simple geometric models to synthetic images, and to camera re-localization for difficult, real datasets.
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://arxiv.org/abs/1908.02484
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Forschungsdaten: Brachmann, Eric, 1987 - : Expert Sample Consensus (ESAC) for visual re-localization [data]
Sach-SW:Computer Science - Computer Vision and Pattern Recognition
K10plus-PPN:1731813082
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68637108   QR-Code
zum Seitenanfang