Status: Bibliographieeintrag
| Online-Ressource |
Verfasst von: | Brachmann, Eric [VerfasserIn]  |
| Rother, Carsten [VerfasserIn]  |
Titel: | Expert Sample Consensus applied to camera re-localization |
Verf.angabe: | Eric Brachmann and Carsten Rother |
Jahr: | 2019 |
Umfang: | 13 S. |
Fussnoten: | Gesehen am 14.09.2020 |
Titel Quelle: | Enthalten in: De.arxiv.org |
Ort Quelle: | [S.l.] : Arxiv.org, 1991 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | (2019) Artikel-Nummer 1908.02484, 13 Seiten |
Abstract: | Fitting model parameters to a set of noisy data points is a common problem in computer vision. In this work, we fit the 6D camera pose to a set of noisy correspondences between the 2D input image and a known 3D environment. We estimate these correspondences from the image using a neural network. Since the correspondences often contain outliers, we utilize a robust estimator such as Random Sample Consensus (RANSAC) or Differentiable RANSAC (DSAC) to fit the pose parameters. When the problem domain, e.g. the space of all 2D-3D correspondences, is large or ambiguous, a single network does not cover the domain well. Mixture of Experts (MoE) is a popular strategy to divide a problem domain among an ensemble of specialized networks, so called experts, where a gating network decides which expert is responsible for a given input. In this work, we introduce Expert Sample Consensus (ESAC), which integrates DSAC in a MoE. Our main technical contribution is an efficient method to train ESAC jointly and end-to-end. We demonstrate experimentally that ESAC handles two real-world problems better than competing methods, i.e. scalability and ambiguity. We apply ESAC to fitting simple geometric models to synthetic images, and to camera re-localization for difficult, real datasets. |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: http://arxiv.org/abs/1908.02484 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Bibliogr. Hinweis: | Forschungsdaten: Brachmann, Eric, 1987 - : Expert Sample Consensus (ESAC) for visual re-localization [data] |
Sach-SW: | Computer Science - Computer Vision and Pattern Recognition |
K10plus-PPN: | 1731813082 |
Verknüpfungen: | → Sammelwerk |
Expert Sample Consensus applied to camera re-localization / Brachmann, Eric [VerfasserIn]; 2019 (Online-Ressource)
68637108