Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Fan, Hongchao [VerfasserIn]   i
 Yao, Wei [VerfasserIn]   i
 Tang, Long [VerfasserIn]   i
Titel:Identifying man-made objects along urban road corridors from mobile LiDAR data
Verf.angabe:Hongchao Fan, Wei Yao, and Long Tang
Jahr:2014
Jahr des Originals:2013
Umfang:5 S.
Fussnoten:Gesehen am 14.09.2020 ; First published: 30 October 2013
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE geoscience and remote sensing letters
Ort Quelle:New York, NY : IEEE, 2004
Jahr Quelle:2014
Band/Heft Quelle:11(2014), 5, Seite 950-954
Abstract:This letter is dedicated to a generic approach for the automated detection and classification of man-made objects in urban corridors from point clouds acquired by vehicle-borne mobile laser scanning (MLS). The approach is designed based on a priori knowledge in urban areas: 1) man-made objects feature geometric regularity such as vertical planar structures (e.g., building facades), whereas vegetation reveals huge diversity in shape and point distribution and 2) different types of urban man-made objects can be characterized by the point extension and the height above the ground level. Therefore, MLS-based point clouds are first divided into three layers with respect to the vertical height. In each layer, seed points of man-made objects are indicated by a line filter in the footprints of off-ground objects, which is generated by binarizing the spatial accumulation map of the point clouds. These seed points are further classified by examining in which layers the seed points of objects are found. Finally, points belonging to respective objects can be retrieved based on the classified seed points. The experiments show that various man-made objects on both sides of the street can be well detected, with a detection rate of up to 83%. For the classification of detected urban objects, overall accuracy of 92.37% can be achieved.
DOI:doi:10.1109/LGRS.2013.2283090
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1109/LGRS.2013.2283090
 DOI: https://doi.org/10.1109/LGRS.2013.2283090
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:automated detection
 Buildings
 Classification
 detection
 Feature extraction
 Laser radar
 Lasers
 line filter
 man-made objects
 man-made objects feature geometric regularity
 MLS based point clouds
 Mobile communication
 mobile laser scanning (MLS)
 mobile LiDAR data
 object detection
 optical radar
 point distribution
 Roads
 spatial accumulation
 urban man-made objects
 urban object detection
 urban road corridors
 vegetation
 Vegetation mapping
 vehicle borne mobile laser scanning
 vertical planar structures
K10plus-PPN:1732409552
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68637146   QR-Code
zum Seitenanfang