Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ziener, Christian H. [VerfasserIn]   i
 Kurz, Felix T. [VerfasserIn]   i
 Buschle, Lukas R. [VerfasserIn]   i
 Kampf, Thomas [VerfasserIn]   i
Titel:Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions
Verf.angabe:Christian H. Ziener, Felix T. Kurz, Lukas R. Buschle and Thomas Kampf
E-Jahr:2015
Jahr:04 August 2015
Umfang:26 S.
Fussnoten:Gesehen am 15.09.2020
Titel Quelle:Enthalten in: SpringerPlus
Ort Quelle:London : Biomed Central, 2012
Jahr Quelle:2015
Band/Heft Quelle:4(2015,1) Artikel-Nummer 390, 26 Seiten
ISSN Quelle:2193-1801
Abstract:The cylindrical Bessel differential equation and the spherical Bessel differential equation in the interval $$R \le r \le \gamma R$$R≤r≤γRwith Neumann boundary conditions are considered. The eigenfunctions are linear combinations of the Bessel function $$\Phi _{n,\nu }(r)=Y_{\nu }^{\prime }(\lambda _{n,\nu }) J_{\nu }(\lambda _{n,\nu } r/R)-J_{\nu }^{\prime }(\lambda _{n,\nu }) Y_{\nu }(\lambda _{n,\nu } r/R)$$Φn,ν(r)=Yν′(λn,ν)Jν(λn,νr/R)-Jν′(λn,ν)Yν(λn,νr/R)or linear combinations of the spherical Bessel functions $$\psi _{m,\nu }(r)=y_{\nu }^{\prime }(\lambda _{m,\nu }) j_{\nu }(\lambda _{m,\nu } r/R)-j_{\nu }^{\prime }(\lambda _{m,\nu }) y_{\nu }(\lambda _{m,\nu } r/R)$$ψm,ν(r)=yν′(λm,ν)jν(λm,νr/R)-jν′(λm,ν)yν(λm,νr/R). The orthogonality relations with analytical expressions for the normalization constant are given. Explicit expressions for the Lommel integrals in terms of Lommel functions are derived. The cross product zeros $$Y_{\nu }^{\prime }(\lambda _{n,\nu }) J_{\nu }^{\prime }(\gamma \lambda _{n,\nu })-J_{\nu }^{\prime }(\lambda _{n,\nu }) Y_{\nu }^{\prime }(\gamma \lambda _{n,\nu }) = 0$$Yν′(λn,ν)Jν′(γλn,ν)-Jν′(λn,ν)Yν′(γλn,ν)=0and $$y_{\nu }^{\prime }(\lambda _{m,\nu }) j_{\nu }^{\prime }(\gamma \lambda _{m,\nu })-j_{\nu }^{\prime }(\lambda _{m,\nu }) y_{\nu }^{\prime }(\gamma \lambda _{m,\nu }) = 0$$yν′(λm,ν)jν′(γλm,ν)-jν′(λm,ν)yν′(γλm,ν)=0are considered in the complex plane for real as well as complex values of the index $$\nu $$νand approximations for the exceptional zero $$\lambda _{1,\nu }$$λ1,νare obtained. A numerical scheme based on the discretization of the two-dimensional and three-dimensional Laplace operator with Neumann boundary conditions is presented. Explicit representations of the radial part of the Laplace operator in form of a tridiagonal matrix allow the simple computation of the cross product zeros.
DOI:doi:10.1186/s40064-015-1142-0
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1186/s40064-015-1142-0
 DOI: https://doi.org/10.1186/s40064-015-1142-0
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1732463417
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68637394   QR-Code
zum Seitenanfang