Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Chen, Ke-Jung [VerfasserIn]   i
 Heger, Alexander [VerfasserIn]   i
 Woosley, Stan [VerfasserIn]   i
 Almgren, Ann [VerfasserIn]   i
 Whalen, Daniel J. [VerfasserIn]   i
Titel:Pair instability supernovae of very massive population III stars
Verf.angabe:Ke-Jung Chen, Alexander Heger, Stan Woosley, Ann Almgren, Daniel J. Whalen
E-Jahr:2014
Jahr:2014 August 13
Umfang:12 S.
Illustrationen:Illustrationen, Diagramme
Fussnoten:Gesehen am 16.09.2020
Titel Quelle:Enthalten in: The astrophysical journal / 1
Ort Quelle:London : Institute of Physics Publ., 1996
Jahr Quelle:2014
Band/Heft Quelle:792(2014,1) Artikel-Nummer 44, 12 Seiten
ISSN Quelle:1538-4357
Abstract:Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 M ☉ die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core contraction, to capture any dynamical instabilities that may be seeded by core contraction and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼20-100 s after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh-Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
DOI:doi:10.1088/0004-637X/792/1/44
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1088/0004-637X/792/1/44
 DOI: https://doi.org/10.1088/0004-637X/792/1/44
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1733111948
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68637651   QR-Code
zum Seitenanfang