Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Yang, Bing [VerfasserIn]  |
| Sun, Hui [VerfasserIn]  |
| Wang, Hanyi [VerfasserIn]  |
| Dai, Han-Ning [VerfasserIn]  |
| Yuan, Zhen-Sheng [VerfasserIn]  |
| Pan, Jian-Wei [VerfasserIn]  |
Titel: | Cooling and entangling ultracold atoms in optical lattices |
Verf.angabe: | Bing Yang, Hui Sun, Chun-Jiong Huang, Han-Yi Wang, Youjin Deng, Han-Ning Dai, Zhen-Sheng Yuan, Jian-Wei Pan |
E-Jahr: | 2020 |
Jahr: | 18 June 2020 |
Umfang: | 4 S. |
Fussnoten: | Gesehen am 08.10.2020 |
Titel Quelle: | Enthalten in: Science |
Ort Quelle: | Washington, DC [u.a.] : American Association for the Advancement of Science, 1990 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 369(2020), 6503, Seite 550-553 |
Abstract: | Lowering the entropy - Atoms loaded in an optical lattice can convincingly mimic the behavior of electrons in solids. However, reaching very low temperatures, where the most interesting quantum phases are expected to occur, is tricky. Yang et al. introduced a clever experimental technique to reduce the entropy of their sample. They created an array consisting of alternating rows of sample atoms and reservoirs. The entropy was transferred from the sample atoms to the adjacent reservoirs, which were then removed. The resulting low-entropy system can be used as a basis for quantum simulation and information. - Science, this issue p. 550 - Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavior of such systems with extremely low temperature. We report the cooling of a quantum simulator with 10,000 atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of 1.9+1.7−0.4×10−3kB1.9−0.4+1.7×10−3kThe atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993 ± 0.001 for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and may enable the creation of large-scale entanglement. - An entropy redistribution scheme is developed for applications in quantum simulation and information processing. - An entropy redistribution scheme is developed for applications in quantum simulation and information processing. |
DOI: | doi:10.1126/science.aaz6801 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1126/science.aaz6801 |
| Volltext: https://science.sciencemag.org/content/369/6503/550 |
| DOI: https://doi.org/10.1126/science.aaz6801 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1733488413 |
Verknüpfungen: | → Sammelwerk |
Cooling and entangling ultracold atoms in optical lattices / Yang, Bing [VerfasserIn]; 18 June 2020 (Online-Ressource)
68639082