Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Müller, Markus P. [VerfasserIn]  |
| Pastena, Michele [VerfasserIn]  |
Titel: | A generalization of majorization that characterizes shannon entropy |
Verf.angabe: | Markus P. Müller and Michele Pastena |
E-Jahr: | 2016 |
Jahr: | 11 February 2016 |
Umfang: | 10 S. |
Fussnoten: | Gesehen am 02.10.2020 |
Titel Quelle: | Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on information theory |
Ort Quelle: | Piscataway, NJ : IEEE, 1963 |
Jahr Quelle: | 2016 |
Band/Heft Quelle: | 62(2016), 4, Seite 1711-1720 |
Abstract: | We introduce a binary relation on the finite discrete probability distributions, which generalizes notions of majorization that have been studied in quantum information theory. Motivated by questions in thermodynamics, our relation describes the transitions induced by bistochastic maps in the presence of additional auxiliary systems, which may become correlated in the process. We show that this relation is completely characterized by Shannon entropy H, which yields an interpretation of H in resource-theoretic terms, and admits a particularly simple proof of a known characterization of H in terms of natural information-theoretic properties. |
DOI: | doi:10.1109/TIT.2016.2528285 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1109/TIT.2016.2528285 |
| DOI: https://doi.org/10.1109/TIT.2016.2528285 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | auxiliary systems |
| binary relation |
| bistochastic maps |
| Context |
| entropy |
| Entropy |
| finite discrete probability distributions |
| Information theory |
| Majorization |
| natural information-theoretic properties |
| probability |
| Probability distribution |
| quantum information |
| quantum information theory |
| Quantum mechanics |
| Random variables |
| resource-theoretic terms |
| Shannon entropy |
| thermodynamics |
| Thermodynamics |
K10plus-PPN: | 1734482974 |
Verknüpfungen: | → Zeitschrift |
¬A¬ generalization of majorization that characterizes shannon entropy / Müller, Markus P. [VerfasserIn]; 11 February 2016 (Online-Ressource)
68642326