Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kreshuk, Anna [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
 Pax, Elizabeth [VerfasserIn]   i
 Bock, Davi D. [VerfasserIn]   i
 Hamprecht, Fred [VerfasserIn]   i
Titel:Automated detection of synapses in serial section transmission electron microscopy image stacks
Verf.angabe:Anna Kreshuk, Ullrich Koethe, Elizabeth Pax, Davi D. Bock, Fred A. Hamprecht
E-Jahr:2014
Jahr:February 6, 2014
Umfang:11 S.
Fussnoten:Gesehen am 06.10.2020
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2014
Band/Heft Quelle:9(2014,2) Artikel-Nummer e87351, 11 Seiten
ISSN Quelle:1932-6203
Abstract:We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem).
DOI:doi:10.1371/journal.pone.0087351
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0087351
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087351
 DOI: https://doi.org/10.1371/journal.pone.0087351
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Algorithms
 Anisotropy
 Cell membranes
 Computational pipelines
 Connectomics
 Electron microscopy
 Imaging techniques
 Synapses
K10plus-PPN:1734794178
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68643568   QR-Code
zum Seitenanfang