Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Horst, Leonhard [VerfasserIn]   i
 Edelmann, Philipp V. F. [VerfasserIn]   i
 Andrássy, Róbert [VerfasserIn]   i
 Röpke, Friedrich [VerfasserIn]   i
 Bowman, Dominic [VerfasserIn]   i
 Aerts, C. [VerfasserIn]   i
 Ratnasingam, R. P. [VerfasserIn]   i
Titel:Fully compressible simulations of waves and core convection in main-sequence stars
Verf.angabe:L. Horst, P.V.F. Edelmann, R. Andrássy, F.K. Röpke, D.M. Bowman, C. Aerts, and R.P. Ratnasingam
E-Jahr:2020
Jahr:01 September 2020
Umfang:23 S.
Fussnoten:Gesehen am 22.10.2020
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2020
Band/Heft Quelle:641(2020) Artikel-Nummer A18, 23 Seiten
ISSN Quelle:1432-0746
Abstract:<i>Context.<i/> Recent, nonlinear simulations of wave generation and propagation in full-star models have been carried out in the anelastic approximation using spectral methods. Although it makes long time steps possible, this approach excludes the physics of sound waves completely and requires rather high artificial viscosity and thermal diffusivity for numerical stability. A direct comparison with observations is thus limited.<i>Aims.<i/> We explore the capabilities of our compressible multidimensional Seven-League Hydro (SLH) code to simulate stellar oscillations.<i>Methods.<i/> We compare some fundamental properties of internal gravity and pressure waves in 2D SLH simulations to linear wave theory using two test cases: (1) an interval gravity wave packet in the Boussinesq limit and (2) a realistic 3 <i>M<i/><sub>⊙<sub/> stellar model with a convective core and a radiative envelope. Oscillation properties of the stellar model are also discussed in the context of observations.<i>Results.<i/> Our tests show that specialized low-Mach techniques are necessary when simulating oscillations in stellar interiors. Basic properties of internal gravity and pressure waves in our simulations are in good agreement with linear wave theory. As compared to anelastic simulations of the same stellar model, we can follow internal gravity waves of much lower frequencies. The temporal frequency spectra of velocity and temperature are flat and compatible with the observed spectra of massive stars.<i>Conclusion.<i/> The low-Mach compressible approach to hydrodynamical simulations of stellar oscillations is promising. Our simulations are less dissipative and require less luminosity boosting than comparable spectral simulations. The fully-compressible approach allows for the coupling of gravity and pressure waves in the outer convective envelopes of evolved stars to be studied in the future.
DOI:doi:10.1051/0004-6361/202037531
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1051/0004-6361/202037531
 Volltext: https://www.aanda.org/articles/aa/abs/2020/09/aa37531-20/aa37531-20.html
 DOI: https://doi.org/10.1051/0004-6361/202037531
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1736223372
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68652733   QR-Code
zum Seitenanfang