Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Poos, Alexandra [VerfasserIn]   i
 Maicher, André [VerfasserIn]   i
 Dieckmann, Anna Katharina [VerfasserIn]   i
 Oswald, Marcus [VerfasserIn]   i
 Eils, Roland [VerfasserIn]   i
 Kupiec, Martin [VerfasserIn]   i
 Luke, Brian [VerfasserIn]   i
 König, Rainer [VerfasserIn]   i
Titel:Mixed integer linear programming based machine learning approach identifies regulators of telomerase in yeast
Verf.angabe:Alexandra M. Poos, André Maicher, Anna K. Dieckmann, Marcus Oswald, Roland Eils, Martin Kupiec, Brian Luke and Rainer König
E-Jahr:2016
Jahr:22 February 2016
Umfang:9 S.
Fussnoten:Published online 22 February 2016 ; Gesehen am 03.11.2020
Titel Quelle:Enthalten in: Nucleic acids research
Ort Quelle:Oxford : Oxford Univ. Press, 1974
Jahr Quelle:2016
Band/Heft Quelle:44(2016,10), Artikel-Nummer e93, 9 Seiten
ISSN Quelle:1362-4962
Abstract:Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments.
DOI:doi:10.1093/nar/gkw111
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

DOI: https://doi.org/10.1093/nar/gkw111
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Gene Expression Regulation, Fungal
 Gene Regulatory Networks
 Histones
 Machine Learning
 Mediator Complex
 Mutation
 Nuclear Proteins
 Programming, Linear
 Repressor Proteins
 Reproducibility of Results
 Saccharomyces cerevisiae
 Saccharomyces cerevisiae Proteins
 Sirtuin 2
 Software
 Telomerase
K10plus-PPN:1737690209
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68656941   QR-Code
zum Seitenanfang