Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kokh, Daria B. [VerfasserIn]   i
 Doser, Bernd [VerfasserIn]   i
 Richter, Stefan [VerfasserIn]   i
 Ormersbach, Fabian [VerfasserIn]   i
 Cheng, Xingyi [VerfasserIn]   i
 Wade, Rebecca C. [VerfasserIn]   i
Titel:A workflow for exploring ligand dissociation from a macromolecule
Titelzusatz:efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories
Verf.angabe:Daria B. Kokh, Bernd Doser, Stefan Richter, Fabian Ormersbach, Xingyi Cheng, and Rebecca C. Wade
E-Jahr:2020
Jahr:25 September 2020
Fussnoten:Gesehen am 05.11.2020
Titel Quelle:Enthalten in: The journal of chemical physics
Ort Quelle:Melville, NY : American Institute of Physics, 1933
Jahr Quelle:2020
Band/Heft Quelle:153(2020,12) Artikel-Nummer 125102, 15 Seiten
ISSN Quelle:1089-7690
Abstract:The dissociation of ligands from proteins and other biomacromolecules occurs over a wide range of timescales. For most pharmaceutically relevant inhibitors, these timescales are far beyond those that are accessible by conventional molecular dynamics (MD) simulation. Consequently, to explore ligand egress mechanisms and compute dissociation rates, it is necessary to enhance the sampling of ligand unbinding. Random Acceleration MD (RAMD) is a simple method to enhance ligand egress from a macromolecular binding site, which enables the exploration of ligand egress routes without prior knowledge of the reaction coordinates. Furthermore, the τRAMD procedure can be used to compute the relative residence times of ligands. When combined with a machine-learning analysis of protein-ligand interaction fingerprints (IFPs), molecular features that affect ligand unbinding kinetics can be identified. Here, we describe the implementation of RAMD in GROMACS 2020, which provides significantly improved computational performance, with scaling to large molecular systems. For the automated analysis of RAMD results, we developed MD-IFP, a set of tools for the generation of IFPs along unbinding trajectories and for their use in the exploration of ligand dynamics. We demonstrate that the analysis of ligand dissociation trajectories by mapping them onto the IFP space enables the characterization of ligand dissociation routes and metastable states. The combined implementation of RAMD and MD-IFP provides a computationally efficient and freely available workflow that can be applied to hundreds of compounds in a reasonable computational time and will facilitate the use of τRAMD in drug design.
DOI:doi:10.1063/5.0019088
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1063/5.0019088
 Volltext: https://aip.scitation.org/doi/10.1063/5.0019088
 DOI: https://doi.org/10.1063/5.0019088
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1737987678
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68657812   QR-Code
zum Seitenanfang