Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Zisler, Matthias [VerfasserIn]  |
| Zern, Artjom [VerfasserIn]  |
| Petra, Stefania [VerfasserIn]  |
| Schnörr, Christoph [VerfasserIn]  |
Titel: | Self-assignment flows for unsupervised data labeling on graphs |
Verf.angabe: | Matthias Zisler, Artjom Zern, Stefania Petra, and Christoph Schnörr |
E-Jahr: | 2020 |
Jahr: | July 8, 2020 |
Umfang: | 44 S. |
Fussnoten: | Gesehen am 09.11.2020 |
Titel Quelle: | Enthalten in: Society for Industrial and Applied MathematicsSIAM journal on imaging sciences |
Ort Quelle: | Philadelphia, Pa. : SIAM, 2008 |
Jahr Quelle: | 2020 |
Band/Heft Quelle: | 13(2020), 3, Seite 1113-1156 |
ISSN Quelle: | 1936-4954 |
Abstract: | This paper extends the recently introduced assignment flow approach for supervised image labeling to unsupervised scenarios where no labels are given. The resulting self-assignment flow takes a pairwise data affinity matrix as input data and maximizes the correlation with a low-rank matrix that is parametrized by the variables of the assignment flow, which entails an assignment of the data to themselves through the formation of latent labels (feature prototypes). A single user parameter, the neighborhood size for the geometric regularization of assignments, drives the entire process. By smooth geodesic interpolation between different normalizations of self-assignment matrices on the positive definite matrix manifold, a one-parameter family of self-assignment flows is defined. Accordingly, our approach can be characterized from different viewpoints, e.g., as performing spatially regularized, rank-constrained discrete optimal transport, or as computing spatially regularized normalized spectral cuts. Regarding combinatorial optimization, our approach successfully determines completely positive factorizations of self-assignments in large-scale scenarios, subject to spatial regularization. Various experiments, including the unsupervised learning of patch dictionaries using a locally invariant distance function, illustrate the properties of the approach. |
DOI: | doi:10.1137/19M1298639 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1137/19M1298639 |
| Volltext: https://epubs.siam.org/doi/10.1137/19M1298639 |
| DOI: https://doi.org/10.1137/19M1298639 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1738117979 |
Verknüpfungen: | → Zeitschrift |
Self-assignment flows for unsupervised data labeling on graphs / Zisler, Matthias [VerfasserIn]; July 8, 2020 (Online-Ressource)
68658769