Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zisler, Matthias [VerfasserIn]   i
 Zern, Artjom [VerfasserIn]   i
 Petra, Stefania [VerfasserIn]   i
 Schnörr, Christoph [VerfasserIn]   i
Titel:Self-assignment flows for unsupervised data labeling on graphs
Verf.angabe:Matthias Zisler, Artjom Zern, Stefania Petra, and Christoph Schnörr
E-Jahr:2020
Jahr:July 8, 2020
Umfang:44 S.
Fussnoten:Gesehen am 09.11.2020
Titel Quelle:Enthalten in: Society for Industrial and Applied MathematicsSIAM journal on imaging sciences
Ort Quelle:Philadelphia, Pa. : SIAM, 2008
Jahr Quelle:2020
Band/Heft Quelle:13(2020), 3, Seite 1113-1156
ISSN Quelle:1936-4954
Abstract:This paper extends the recently introduced assignment flow approach for supervised image labeling to unsupervised scenarios where no labels are given. The resulting self-assignment flow takes a pairwise data affinity matrix as input data and maximizes the correlation with a low-rank matrix that is parametrized by the variables of the assignment flow, which entails an assignment of the data to themselves through the formation of latent labels (feature prototypes). A single user parameter, the neighborhood size for the geometric regularization of assignments, drives the entire process. By smooth geodesic interpolation between different normalizations of self-assignment matrices on the positive definite matrix manifold, a one-parameter family of self-assignment flows is defined. Accordingly, our approach can be characterized from different viewpoints, e.g., as performing spatially regularized, rank-constrained discrete optimal transport, or as computing spatially regularized normalized spectral cuts. Regarding combinatorial optimization, our approach successfully determines completely positive factorizations of self-assignments in large-scale scenarios, subject to spatial regularization. Various experiments, including the unsupervised learning of patch dictionaries using a locally invariant distance function, illustrate the properties of the approach.
DOI:doi:10.1137/19M1298639
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1137/19M1298639
 Volltext: https://epubs.siam.org/doi/10.1137/19M1298639
 DOI: https://doi.org/10.1137/19M1298639
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1738117979
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68658769   QR-Code
zum Seitenanfang