Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Steinbuß, Georg [VerfasserIn]   i
 Kriegsmann, Katharina [VerfasserIn]   i
 Kriegsmann, Mark [VerfasserIn]   i
Titel:Identification of gastritis subtypes by convolutional neuronal networks on histological images of antrum and corpus biopsies
Verf.angabe:Georg Steinbuss, Katharina Kriegsmann and Mark Kriegsmann
E-Jahr:2020
Jahr:11 September 2020
Umfang:16 S.
Fussnoten:Gesehen am 09.11.2020
Titel Quelle:Enthalten in: International journal of molecular sciences
Ort Quelle:Basel : Molecular Diversity Preservation International, 2000
Jahr Quelle:2020
Band/Heft Quelle:21(2020,18) Artikel-Nummer 6652, 16 Seiten
ISSN Quelle:1422-0067
 1661-6596
Abstract:Background: Gastritis is a prevalent disease and commonly classified into autoimmune (A), bacterial (B), and chemical (C) type gastritis. While the former two subtypes are associated with an increased risk of developing gastric intestinal adenocarcinoma, the latter subtype is not. In this study, we evaluated the capability to classify common gastritis subtypes using convolutional neuronal networks on a small dataset of antrum and corpus biopsies. Methods: 1230 representative 500 × 500 µm images of 135 patients with type A, type B, and type C gastritis were extracted from scanned histological slides. Patients were allocated randomly into a training set (60%), a validation set (20%), and a test set (20%). One classifier for antrum and one classifier for corpus were trained and optimized. After optimization, the test set was analyzed using a joint result from both classifiers. Results: Overall accuracy in the test set was 84% and was particularly high for type B gastritis with a sensitivity of 100% and a specificity of 93%. Conclusions: Classification of gastritis subtypes is possible using convolutional neural networks on a small dataset of histopathological images of antrum and corpus biopsies. Deep learning strategies to support routine diagnostic pathology merit further evaluation.
DOI:doi:10.3390/ijms21186652
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3390/ijms21186652
 Volltext: https://www.mdpi.com/1422-0067/21/18/6652
 DOI: https://doi.org/10.3390/ijms21186652
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 convolutional neural networks
 deep learning
 digital image analysis
K10plus-PPN:1738240932
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68658861   QR-Code
zum Seitenanfang