Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Lösel, Philipp [VerfasserIn]   i
 Kamp, Thomas van de [VerfasserIn]   i
 Jayme, Alejandra [VerfasserIn]   i
 Ershov, Alexey [VerfasserIn]   i
 Faragó, Tomáš [VerfasserIn]   i
 Pichler, Olaf [VerfasserIn]   i
 Tan Jerome, Nicholas [VerfasserIn]   i
 Aadepu, Narendar [VerfasserIn]   i
 Bremer, Sabine [VerfasserIn]   i
 Chilingaryan, Suren [VerfasserIn]   i
 Heethoff, Michael [VerfasserIn]   i
 Kopmann, Andreas [VerfasserIn]   i
 Odar, Janes [VerfasserIn]   i
 Schmelzle, Sebastian [VerfasserIn]   i
 Zuber, Marcus [VerfasserIn]   i
 Wittbrodt, Joachim [VerfasserIn]   i
 Baumbach, Tilo [VerfasserIn]   i
 Heuveline, Vincent [VerfasserIn]   i
Titel:Introducing Biomedisa as an open-source online platform for biomedical image segmentation
Verf.angabe:Philipp D. Lösel, Thomas van de Kamp, Alejandra Jayme, Alexey Ershov, Tomáš Faragó, Olaf Pichler, Nicholas Tan Jerome, Narendar Aadepu, Sabine Bremer, Suren A. Chilingaryan, Michael Heethoff, Andreas Kopmann, Janes Odar, Sebastian Schmelzle, Marcus Zuber, Joachim Wittbrodt, Tilo Baumbach & Vincent Heuveline
E-Jahr:2020
Jahr:04 November 2020
Umfang:14 S.
Fussnoten:Gesehen am 10.11.2020
Titel Quelle:Enthalten in: Nature Communications
Ort Quelle:[London] : Springer Nature, 2010
Jahr Quelle:2020
Band/Heft Quelle:11(2020), Artikel-ID 5577, Seite 1-14
ISSN Quelle:2041-1723
Abstract:We present Biomedisa, a free and easy-to-use open-source online platform developed for semi-automatic segmentation of large volumetric images. The segmentation is based on a smart interpolation of sparsely pre-segmented slices taking into account the complete underlying image data. Biomedisa is particularly valuable when little a priori knowledge is available, e.g. for the dense annotation of the training data for a deep neural network. The platform is accessible through a web browser and requires no complex and tedious configuration of software and model parameters, thus addressing the needs of scientists without substantial computational expertise. We demonstrate that Biomedisa can drastically reduce both the time and human effort required to segment large images. It achieves a significant improvement over the conventional approach of densely pre-segmented slices with subsequent morphological interpolation as well as compared to segmentation tools that also consider the underlying image data. Biomedisa can be used for different 3D imaging modalities and various biomedical applications.
DOI:doi:10.1038/s41467-020-19303-w
URL:kostenfrei: Volltext: https://doi.org/10.1038/s41467-020-19303-w
 kostenfrei: Volltext: https://www.nature.com/articles/s41467-020-19303-w
 DOI: https://doi.org/10.1038/s41467-020-19303-w
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1738284980
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68659204   QR-Code
zum Seitenanfang