Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Balbo, Jessica [VerfasserIn]   i
 Mereghetti, Paolo [VerfasserIn]   i
 Herten, Dirk-Peter [VerfasserIn]   i
 Wade, Rebecca C. [VerfasserIn]   i
Titel:The shape of protein crowders is a major determinant of protein diffusion
Verf.angabe:Jessica Balbo, Paolo Mereghetti, Dirk-Peter Herten, and Rebecca C. Wade
E-Jahr:2013
Jahr:2 April 2013
Umfang:9 S.
Fussnoten:Gesehen am 12.11.2020
Titel Quelle:Enthalten in: Biophysical journal
Ort Quelle:Cambridge, Mass. : Cell Press, 1960
Jahr Quelle:2013
Band/Heft Quelle:104(2013), 7, Seite 1576-1584
ISSN Quelle:1542-0086
Abstract:As a model for understanding how molecular crowding influences diffusion and transport of proteins in cellular environments, we combined experimental and theoretical approaches to study the diffusion of proteins in highly concentrated protein solutions. Bovine serum albumin and γ-Globulin were chosen as molecular crowders and as tracers. These two proteins are representatives of the main types of plasma protein and have different shapes and sizes. Solutions consisting of one or both proteins were studied. The self-diffusion coefficients of the fluorescently labeled tracer proteins were measured by means of fluorescence correlation spectroscopy at a total protein concentration of up to 400 g/L. γ-Globulin is found to have a stronger influence as a crowder on the tracer self-diffusion coefficient than Bovine serum albumin. Brownian dynamics simulations show that the excluded volume and the shape of the crowding protein have a significantly stronger influence on translational and rotational diffusion coefficients, as well as transient oligomerization, than hydrodynamic or direct interactions. Anomalous subdiffusion, which is not observed at the experimental fluorescence correlation spectroscopy timescales (>100 μs), appears only at very short timescales (<1 μs) in the simulations due to steric effects of the proteins. We envision that the combined experimental and computational approach employed here can be developed to unravel the different biophysical contributions to protein motion and interaction in cellular environments by systematically varying protein properties such as molecular weight, size, shape, and electrostatic interactions.
DOI:doi:10.1016/j.bpj.2013.02.041
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.bpj.2013.02.041
 Volltext: http://www.sciencedirect.com/science/article/pii/S0006349513002592
 DOI: https://doi.org/10.1016/j.bpj.2013.02.041
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1738607402
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68660488   QR-Code
zum Seitenanfang