Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Leger, Stefan [VerfasserIn]   i
 Baumann, Michael [VerfasserIn]   i
Titel:Comprehensive analysis of tumour sub-volumes for radiomic risk modelling in locally advanced HNSCC
Verf.angabe:Stefan Leger, Alex Zwanenburg, Karoline Leger, Fabian Lohaus, Annett Linge, Andreas Schreiber, Goda Kalinauskaite, Inge Tinhofer, Nika Guberina, Maja Guberina, Panagiotis Balermpas, Jens von der Grün, Ute Ganswindt, Claus Belka, Jan C. Peeken, Stephanie E. Combs, Simon Boeke, Daniel Zips, Christian Richter, Mechthild Krause, Michael Baumann, Esther G.C. Troost and Steffen Löck
E-Jahr:2020
Jahr:19 October 2020
Umfang:26 S.
Fussnoten:Gesehen am 30.11.2020
Titel Quelle:Enthalten in: Cancers
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2020
Band/Heft Quelle:12(2020,10) Artikel-Nummer 3047, 26 Seiten
ISSN Quelle:2072-6694
Abstract:Imaging features for radiomic analyses are commonly calculated from the entire gross tumour volume (GTVentire). However, tumours are biologically complex and the consideration of different tumour regions in radiomic models may lead to an improved outcome prediction. Therefore, we investigated the prognostic value of radiomic analyses based on different tumour sub-volumes using computed tomography imaging of patients with locally advanced head and neck squamous cell carcinoma. The GTVentire was cropped by different margins to define the rim and the corresponding core sub-volumes of the tumour. Subsequently, the best performing tumour rim sub-volume was extended into surrounding tissue with different margins. Radiomic risk models were developed and validated using a retrospective cohort consisting of 291 patients in one of the six Partner Sites of the German Cancer Consortium Radiation Oncology Group treated between 2005 and 2013. The validation concordance index (C-index) averaged over all applied learning algorithms and feature selection methods using the GTVentire achieved a moderate prognostic performance for loco-regional tumour control (C-index: 0.61 ± 0.04 (mean ± std)). The models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed higher median performances (C-index: 0.65 ± 0.02 and 0.64 ± 0.05, respectively), while models based on the corresponding tumour core volumes performed less (C-index: 0.59 ± 0.01). The difference in C-index between the 5 mm tumour rim and the corresponding core volume showed a statistical trend (p = 0.10). After additional prospective validation, the consideration of tumour sub-volumes may be a promising way to improve prognostic radiomic risk models.
DOI:doi:10.3390/cancers12103047
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.3390/cancers12103047
 Volltext: https://www.mdpi.com/2072-6694/12/10/3047
 DOI: https://doi.org/10.3390/cancers12103047
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:image-based risk modelling
 machine learning
 personalised therapy
 radiation oncology
 radiomic
K10plus-PPN:1741500729
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68666779   QR-Code
zum Seitenanfang