Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Sasmal, Sudip [VerfasserIn]   i
 Vendrell, Oriol [VerfasserIn]   i
Titel:Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons
Titelzusatz:Application within the framework of the MCTDH method
Verf.angabe:Sudip Sasmal, and Oriol Vendrell
E-Jahr:2020
Jahr:19 October 2020
Fussnoten:Gesehen am 21.12.2020
Titel Quelle:Enthalten in: The journal of chemical physics
Ort Quelle:Melville, NY : American Institute of Physics, 1933
Jahr Quelle:2020
Band/Heft Quelle:153(2020,15) Artikel-Nummer 154110, 19 Seiten
ISSN Quelle:1089-7690
Abstract:A first principles quantum formalism to describe the non-adiabatic dynamics of electrons and nuclei based on a second quantization representation (SQR) of the electronic motion combined with the usual representation of the nuclear coordinates is introduced. This procedure circumvents the introduction of potential energy surfaces and non-adiabatic couplings, providing an alternative to the Born-Oppenheimer approximation. An important feature of the molecular Hamiltonian in the mixed first quantized representation for the nuclei and the SQR representation for the electrons is that all degrees of freedom, nuclear positions and electronic occupations, are distinguishable. This makes the approach compatible with various tensor decomposition Ansätze for the propagation of the nuclear-electronic wavefunction. Here, we describe the application of this formalism within the multi-configuration time-dependent Hartree framework and its multilayer generalization, corresponding to Tucker and hierarchical Tucker tensor decompositions of the wavefunction, respectively. The approach is applied to the calculation of the photodissociation cross section of the HeH+ molecule under extreme ultraviolet irradiation, which features nonadiabatic effects and quantum interferences between the two possible fragmentation channels, He + H+ and He+ + H. These calculations are compared with the usual description based on ab initio potential energy surfaces and non-adiabatic coupling matrix elements, which fully agree. The proof-of-principle calculations serve to illustrate the advantages and drawbacks of this formalism, which are discussed in detail, as well as possible ways to overcome them. We close with an outlook of possible application domains where the formalism might outperform the usual approach, for example, in situations that combine a strong static correlation of the electrons with non-adiabatic electronic-nuclear effects.
DOI:doi:10.1063/5.0028116
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1063/5.0028116
 Volltext: http://aip.scitation.org/doi/10.1063/5.0028116
 DOI: https://doi.org/10.1063/5.0028116
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1743373597
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68675594   QR-Code
zum Seitenanfang