Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Krumholz, Mark R. [VerfasserIn]   i
 Ireland, Michael J. [VerfasserIn]   i
 Kratter, Kaitlin [VerfasserIn]   i
Titel:Dynamics of small grains in transitional discs
Verf.angabe:Mark R. Krumholz, Michael J. Ireland and Kaitlin M. Kratter
E-Jahr:2020
Jahr:21 August 2020
Umfang:20 S.
Fussnoten:Gesehen am 11.01.2021
Titel Quelle:Enthalten in: Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society
Ort Quelle:Oxford : Oxford Univ. Press, 1827
Jahr Quelle:2020
Band/Heft Quelle:498(2020), 2, Seite 3023-3042
ISSN Quelle:1365-2966
Abstract:Transitional discs have central regions characterized by significant depletion of both dust and gas compared to younger, optically thick discs. However, gas and dust are not depleted by equal amounts: gas surface densities are typically reduced by factors of ∼100, but small dust grains are sometimes depleted by far larger factors, to the point of being undetectable. While this extreme dust depletion is often attributed to planet formation, in this paper we show that another physical mechanism is possible: expulsion of grains from the disc by radiation pressure. We explore this mechanism using 2D simulations of dust dynamics, simultaneously solving the equation of radiative transfer with the evolution equations for dust diffusion and advection under the combined effects of stellar radiation and hydrodynamic interaction with a turbulent, accreting background gas disc. We show that, in transition discs that are depleted in both gas and dust fraction by factors of ∼100-1000 compared to minimum mass Solar nebular values, and where the ratio of accretion rate to stellar luminosity is low ($\dot{M}/L \lesssim 10^{-10}\, \mathrm{ M}_\odot$ yr$^{-1}\, \mathrm{ L}_\odot ^{-1}$), radiative clearing of any remaining ${\sim}0.5\, \mu\mathrm{ m}$ and larger grains is both rapid and inevitable. The process is size-dependent, with smaller grains removed fastest and larger ones persisting for longer times. Our proposed mechanism thus naturally explains the extreme depletion of small grains commonly found in transition discs. We further suggest that the dependence of this mechanism on grain size and optical properties may explain some of the unusual grain properties recently discovered in a number of transition discs. The simulation code we develop is freely available.
DOI:doi:10.1093/mnras/staa2546
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1093/mnras/staa2546
 DOI: https://doi.org/10.1093/mnras/staa2546
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:174434082X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68678736   QR-Code
zum Seitenanfang