Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:D'Alessandro, Marco [VerfasserIn]   i
 Radev, Stefan [VerfasserIn]   i
 Voß, Andreas [VerfasserIn]   i
 Lombardi, Luigi [VerfasserIn]   i
Titel:A Bayesian brain model of adaptive behavior
Titelzusatz:an application to the Wisconsin Card Sorting Task
Verf.angabe:Marco D’Alessandro, Stefan T. Radev, Andreas Voss and Luigi Lombardi
E-Jahr:2020
Jahr:30 November 2020
Fussnoten:Gesehen am 13.01.2021
Titel Quelle:Enthalten in: PeerJ
Ort Quelle:London [u.a.] : PeerJ, Inc., 2013
Jahr Quelle:2020
Band/Heft Quelle:8(2020) Artikel-Nummer e10316, 32 Seiten
ISSN Quelle:2167-8359
Abstract:Adaptive behavior emerges through a dynamic interaction between cognitive agents and changing environmental demands. The investigation of information processing underlying adaptive behavior relies on controlled experimental settings in which individuals are asked to accomplish demanding tasks whereby a hidden regularity or an abstract rule has to be learned dynamically. Although performance in such tasks is considered as a proxy for measuring high-level cognitive processes, the standard approach consists in summarizing observed response patterns by simple heuristic scoring measures. With this work, we propose and validate a new computational Bayesian model accounting for individual performance in the Wisconsin Card Sorting Test (WCST), a renowned clinical tool to measure set-shifting and deficient inhibitory processes on the basis of environmental feedback. We formalize the interaction between the task’s structure, the received feedback, and the agent’s behavior by building a model of the information processing mechanisms used to infer the hidden rules of the task environment. Furthermore, we embed the new model within the mathematical framework of the Bayesian Brain Theory (BBT), according to which beliefs about hidden environmental states are dynamically updated following the logic of Bayesian inference. Our computational model maps distinct cognitive processes into separable, neurobiologically plausible, information-theoretic constructs underlying observed response patterns. We assess model identification and expressiveness in accounting for meaningful human performance through extensive simulation studies. We then validate the model on real behavioral data in order to highlight the utility of the proposed model in recovering cognitive dynamics at an individual level. We highlight the potentials of our model in decomposing adaptive behavior in the WCST into several information-theoretic metrics revealing the trial-by-trial unfolding of information processing by focusing on two exemplary individuals whose behavior is examined in depth. Finally, we focus on the theoretical implications of our computational model by discussing the mapping between BBT constructs and functional neuroanatomical correlates of task performance. We further discuss the empirical benefit of recovering the assumed dynamics of information processing for both clinical and research practices, such as neurological assessment and model-based neuroscience.
DOI:doi:10.7717/peerj.10316
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.7717/peerj.10316
 Volltext: https://peerj.com/articles/10316
 DOI: https://doi.org/10.7717/peerj.10316
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1744511888
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68679617   QR-Code
zum Seitenanfang