Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wahl, Niklas [VerfasserIn]   i
 Hennig, Philipp [VerfasserIn]   i
 Wieser, Hans-Peter [VerfasserIn]   i
 Bangert, Mark [VerfasserIn]   i
Titel:Analytical probabilistic modeling of dose-volume histograms
Verf.angabe:Niklas Wahl, Philipp Hennig, Hans-Peter Wieser, Mark Bangert
E-Jahr:2020
Jahr:01 August 2020
Umfang:14 S.
Fussnoten:Gesehen am 14.01.2020
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2020
Band/Heft Quelle:47(2020), 10, Seite 5260-5273
ISSN Quelle:2473-4209
 1522-8541
Abstract:Purpose Radiotherapy, especially with charged particles, is sensitive to executional and preparational uncertainties that propagate to uncertainty in dose and plan quality indicators, for example, dose-volume histograms (DVHs). Current approaches to quantify and mitigate such uncertainties rely on explicitly computed error scenarios and are thus subject to statistical uncertainty and limitations regarding the underlying uncertainty model. Here we present an alternative, analytical method to approximate moments, in particular expectation value and (co)variance, of the probability distribution of DVH-points, and evaluate its accuracy on patient data. Methods We use Analytical Probabilistic Modeling (APM) to derive moments of the probability distribution over individual DVH-points based on the probability distribution over dose. By using the computed moments to parameterize distinct probability distributions over DVH-points (here normal or beta distributions), not only the moments but also percentiles, that is, α − DVHs, are computed. The model is subsequently evaluated on three patient cases (intracranial, paraspinal, prostate) in 30- and single-fraction scenarios by assuming the dose to follow a multivariate normal distribution, whose moments are computed in closed-form with APM. The results are compared to a benchmark based on discrete random sampling. Results The evaluation of the new probabilistic model on the three patient cases against a sampling benchmark proves its correctness under perfect assumptions as well as good agreement in realistic conditions. More precisely, ca. 90% of all computed expected DVH-points and their standard deviations agree within 1% volume with their empirical counterpart from sampling computations, for both fractionated and single fraction treatments. When computing α − DVH, the assumption of a beta distribution achieved better agreement with empirical percentiles than the assumption of a normal distribution: While in both cases probabilities locally showed large deviations (up to ±0.2), the respective − DVHs for α=0.05,0.5,0.95 only showed small deviations in respective volume (up to ±5% volume for a normal distribution, and up to 2% for a beta distribution). A previously published model from literature, which was included for comparison, exhibited substantially larger deviations. Conclusions With APM we could derive a mathematically exact description of moments of probability distributions over DVH-points given a probability distribution over dose. The model generalizes previous attempts and performs well for both choices of probability distributions, that is, normal or beta distributions, over DVH-points.
DOI:doi:10.1002/mp.14414
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/https://doi.org/10.1002/mp.14414
 Volltext: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.14414
 DOI: https://doi.org/10.1002/mp.14414
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:analytical probabilistic modeling
 dose-volume histograms
 particle therapy
 uncertainty propagation
 uncertainty quantification
K10plus-PPN:1744655715
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68679902   QR-Code
zum Seitenanfang