Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dencker, Tobias [VerfasserIn]   i
 Klinkisch, Pablo [VerfasserIn]   i
 Maul, Stefan M. [VerfasserIn]   i
 Ommer, Björn [VerfasserIn]   i
Titel:Deep learning of cuneiform sign detection with weak supervision using transliteration alignment
Verf.angabe:Tobias Dencker, Pablo Klinkisch, Stefan M. Maul, Björn Ommer
E-Jahr:2020
Jahr:December 16, 2020
Umfang:21 S.
Fussnoten:Gesehen am 26.01.2021
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2020
Band/Heft Quelle:15(2020,12) Artikel-Nummer e0243039, 21 Seiten
ISSN Quelle:1932-6203
Abstract:The cuneiform script provides a glimpse into our ancient history. However, reading age-old clay tablets is time-consuming and requires years of training. To simplify this process, we propose a deep-learning based sign detector that locates and classifies cuneiform signs in images of clay tablets. Deep learning requires large amounts of training data in the form of bounding boxes around cuneiform signs, which are not readily available and costly to obtain in the case of cuneiform script. To tackle this problem, we make use of existing transliterations, a sign-by-sign representation of the tablet content in Latin script. Since these do not provide sign localization, we propose a weakly supervised approach: We align tablet images with their corresponding transliterations to localize the transliterated signs in the tablet image, before using these localized signs in place of annotations to re-train the sign detector. A better sign detector in turn boosts the quality of the alignments. We combine these steps in an iterative process that enables training a cuneiform sign detector from transliterations only. While our method works weakly supervised, a small number of annotations further boost the performance of the cuneiform sign detector which we evaluate on a large collection of clay tablets from the Neo-Assyrian period. To enable experts to directly apply the sign detector in their study of cuneiform texts, we additionally provide a web application for the analysis of clay tablets with a trained cuneiform sign detector.
DOI:doi:10.1371/journal.pone.0243039
URL:Volltext ; Verlag: https://doi.org/10.1371/journal.pone.0243039
 Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243039
 DOI: https://doi.org/10.1371/journal.pone.0243039
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computer vision
 Decision making
 Deep learning
 Digital imaging
 Language
 Libraries
 Machine learning
 Sequence alignment
K10plus-PPN:1745628398
Verknüpfungen:→ Zeitschrift
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68683695   QR-Code
zum Seitenanfang