Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Jansen, Karl [VerfasserIn]   i
 Müller, Eike Hermann [VerfasserIn]   i
 Scheichl, Robert [VerfasserIn]   i
Titel:Multilevel Monte Carlo algorithm for quantum mechanics on a lattice
Verf.angabe:Karl Jansen, Eike H. Müller, Robert Scheichl
E-Jahr:2020
Jahr:18 December 2020
Umfang:23 S.
Fussnoten:Gesehen am 08.02.2021
Titel Quelle:Enthalten in: Physical review
Ort Quelle:Woodbury, NY : Inst., 2016
Jahr Quelle:2020
Band/Heft Quelle:102(2020,11) Artikel-Nummer 114512, 23 Seiten
ISSN Quelle:2470-0029
Abstract:Monte Carlo simulations of quantum field theories on a lattice become increasingly expensive as the continuum limit is approached since the cost per independent sample grows with a high power of the inverse lattice spacing. Simulations on fine lattices suffer from critical slowdown, the rapid growth of autocorrelations in the Markov chain with decreasing lattice spacing a. This causes a strong increase in the number of lattice configurations that have to be generated to obtain statistically significant results. In this paper, hierarchical sampling methods to tame this growth in autocorrelations are discussed. Combined with multilevel variance reduction techniques, this significantly reduces the computational cost of simulations for given tolerances εdisc on the discretization error and εstat on the statistical error. For an observable with lattice errors of order α and an integrated autocorrelation time that grows like τint∝a−z, multilevel Monte Carlo can reduce the cost from O(ε−2statε−(1+z)/αdisc) to O(ε−2stat|logεdisc|2+ε−1/αdisc) or O(ε−2stat+ε−1/αdisc). Even higher performance gains are expected for nonperturbative simulations of quantum field theories in D-dimensions. The efficiency of the approach is demonstrated on two nontrivial model systems in quantum mechanics, including a topological oscillator that is badly affected by critical slowdown due to freezing of the topological charge. On fine lattices, the new methods are several orders of magnitude faster than standard, single-level sampling based on hybrid Monte Carlo. For high resolutions, multilevel Monte Carlo can be used to accelerate even the cluster algorithm for the topological oscillator. Performance is further improved through perturbative matching. This guarantees efficient coupling of theories on the multilevel lattice hierarchy, which have a natural interpretation in terms of effective theories obtained by renormalization group transformations.
DOI:doi:10.1103/PhysRevD.102.114512
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1103/PhysRevD.102.114512
 Volltext: https://link.aps.org/doi/10.1103/PhysRevD.102.114512
 DOI: https://doi.org/10.1103/PhysRevD.102.114512
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1747747971
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68696662   QR-Code
zum Seitenanfang